Simulink® Real-Time™
User's Guide

7

MATLAB&SIMULINK

222222 ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ User's Guide
© COPYRIGHT 1999-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 1999
November 2000
June 2001
September 2001
July 2002

June 2004
August 2004
October 2004
November 2004
March 2005
September 2005
March 2006
May 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022
March 2023

First printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1 (Release 11.1)
Revised for Version 1.1 (Release 12)
Revised for Version 1.2 (Release 12.1)
Revised for Version 1.3 (Release 12.1+)
Revised for Version 2 (Release 13)
Revised for Version 2.5 (Release 14)
Revised for Version 2.6 (Release 14+)
Revised for Version 2.6.1 (Release 14SP1)
Revised for Version 2.7 (Release 14SP1+)
Revised for Version 2.7.2 (Release 14SP2)
Revised for Version 2.8 (Release 14SP3)
Revised for Version 2.9 (Release 2006a)
Revised for Version 3.0 (Release 2006a+)
Revised for Version 3.1 (Release 2006b)
Revised for Version 3.2 (Release 2007a)
Revised for Version 3.3 (Release 2007b)
Revised for Version 3.4 (Release 2008a)
Revised for Version 4.0 (Release 2008b)
Revised for Version 4.1 (Release 2009a)
Revised for Version 4.2 (Release 2009b)
Revised for Version 4.3 (Release 2010a)
Revised for Version 4.4 (Release 2010b)
Revised for Version 5.0 (Release 2011a)
Revised for Version 5.1 (Release 2011b)
Revised for Version 5.2 (Release 2012a)
Revised for Version 5.3 (Release 2012b)
Revised for Version 5.4 (Release 2013a)
Revised for Version 5.5 (Release 2013b)
Revised for Version 6.0 (Release 2014a)
Revised for Version 6.1 (Release 2014b)
Revised for Version 6.2 (Release 2015a)
Revised for Version 6.3 (Release 2015b)
Revised for Version 6.4 (Release 2016a)
Revised for Version 6.5 (Release 2016b)
Revised for Version 6.6 (Release 2017a)
Revised for Version 6.7 (Release 2017b)
Revised for Version 6.8 (Release 2018a)
Revised for Version 6.9 (Release 2018b)
Revised for Version 6.10 (Release 2019a)
Revised for Version 6.11 (Release 2019b)
Revised for Version 6.12 (Release 2020a)
Revised for Version 7.0 (Release 2020b)
Revised for Version 7.1 (Release 2021a)
Revised for Version 7.2 (Release 2021b)
Revised for Version 8.0 (Release 2022a)
Revised for Version 8.1 (Release 2022b)
Revised for Version 8.2 (Release 2023a)

Contents

Introduction
Simulink Real-Time Product Description 1-2
Speedgoat Target Computers and I/O Hardware 1-3
Model Architectures
FPGA Models

2|

Speedgoat FPGA Support with HDL Workflow Advisor 2-2
Speedgoat Simulink-Programmable 1/0 Module Support 2-2
Prepare for FPGAWorkflow 2-2

Interrupt Configuration 2-4

Functional Mock-up Units and Simulink Real-Time

3|

Apply Functional Mock-up Units by Using Simulink Real-Time 3-2
Compile Source Code for Functional Mock-up Units

3-3
Implement the FMU Blockin Model 3-3
Compile FMU File That Contains Source Code 3-3

Third-Party Calibration Support

4

Calibrate Real-Time Application 4-2

Prepare ASAP2 Data Description File 4-3
Initial Setup 4-6
SetUp Parameters i 4-7

SetUpSignals i 4-7

SetUpLookup Tablesc ... 4-8
Generate Data Description File 4-9
Calibrate Parameters with Vector CANape 4-10
Prepare Project 4-10
Prepare Device 4-10
Configure Signals and Parametersvuun. 4-10
Measure Signals and Calibrate Parameters 4-11
Vector CANape Limitations 4-12
Troubleshoot Vector CANape Operation 4-13
What This Issue Meansc00uiiiiinnennn... 4-13
Try This Workaround 4-13
Calibrate Parameters with ETASInca 4-14
Prepare Database i 4-14
Prepare Project 4-14
Prepare Workspace i 4-14
Prepare Experiment 4-14
Configure Signals and Parameters 4-15
Measure Signals and Calibrate Parameters 4-15
ETAS Inca Limitations 4-16
Troubleshoot ETAS Inca Operation 4-17
What This Issue Meansc.ouuiiiinnnnnnnnnnn.. 4-17
Try This Workaround 0. 4-17

ASAM XIL API Support

S|

Install the Simulink Real-Time Support Package for ASAM XIL

Standard 5-2
Prerequisites for Using ASAM XILAPI 5-2
Classes and Methods of ASAM XILAPI 5-4
MAPOTE Class . ..o vt e 5-4
ECUMPOIt Class .« oottt e e e e e 5-5
ECUCPoOrt Class ie e e e e 5-6
CaptureEvent Class 5-7
Capture Classo v i e e 5-7
WatcherFactory Class i 5-7
ConditionWatcher Class 5-8
CapturingFactory Class, 5-8
CapturingResult Class i, 5-8
CycleNumberDuration Classcovviiiiinennnn. 5-9
TimeSpanDuration Class 5-9
DurationFactory Class 5-9
DurationWatcher Class 5-9
ConditionWatcher Class 5-10

vi Contents

MAPORTFactory Classttt 5-10

TestBench Class 5-11
SignalFactory Classt 5-11
SignalGeneratoryFactory Classc..iiin... 5-14
SignalGenerator Classiiiiiiiinnennnn.. 5-14

Real-Time Application Setup

Real-Time Application Environment

6/

Select Default Target Computer 6-2
Select Default Target Computer 6-2
Command-Line Interface and Target Computer 6-2
Targets Object and Target Computers 6-2

Set Up Target Computer Ethernet Connection 6-3
Connect Ethernet Cables 6-3
Configure Ethernet Address 6-3
Related Ethernet Configuration Topics 6-4

Target Computer Update, Reboot, and Startup Application 6-5
Update Software 6-5
Reboot Target Computer 6-5
Select Startup Application 6-5

7

Signal Monitoring Basics 7-3
Monitor Signals by Using Simulink Real-Time Explorer 7-4
Instrument a Stateflow Subsystem 7-6
Animate Stateflow Charts with Simulink External Mode 7-8
Signal Tracing Basics 7-9
Export and Import Signals in Instrument by Using Simulink Real-
Time Explorer 7-10
Save Signalsto Disk 7-10
Get MATLAB Code for Signals 7-10
Trace Signals by Using Simulink External Mode 7-12
Set Up for External Mode Simulation 7-12

viii

Contents

Set Stop Time and Simulate
Data Logging with Simulation Data Inspector (SDI)
Parameter Tuning and Data Logging

Trace or Log Data with the Simulation Data Inspector
Set Up Model for Loggingciviiiinnnnn...
Set Up Simulation Data Inspector
View SimulationData

External Mode Usage

Signal Logging and Streaming Basics
How Application is Run Affects Signals Logged
File Logging and Streaming Workflow

Tune Parameters by Using Simulink Real-Time Explorer
Set Up the Simulation Data Inspector
View Initial Parameter Values,
Modify Parameter Values

Tune Parameters by Using MATLAB Language
Access Parameters by Using Application Object

Tune Parameters by Using Simulink External Mode
Tune Parameters by Using Block Diagram
Tune Parameters by Using Hold Updates and Update All Parameters

Save and Reload Parameters by Using the MATLAB Language
Save Current Set of Real-Time Application Parameters
Load Saved Parameters to Real-Time Application
View or Edit Parameter Values in Parameter Set
Add or Update Startup Parameter Set for Application

Tunable Block Parameters and Tunable Global Parameters
Tunable Parameters 0.
Inlined Parametersc it
Tune Global Parameters by Using External Mode
Tune Global Parameters by Using Simulink Real-Time Explorer . . .
Tune Global Parameters by Using MATLAB Language

Tune Inlined Parameters by Using Simulink Real-Time Explorer . .
Configure Model to Tune Inlined Parameters
Initial Value
Updated Value i

Tune Inlined Parameters by Using MATLAB Language
Tune Inlined Parameter i,

7-13

7-15

7-19

7-22
7-22
7-22
7-23

7-26

7-27
7-27
7-27

7-31
7-31
7-32
7-32

7-34
7-34

7-36
7-36

7-36

Tune Parameter Structures by Using Simulink Real-Time Explorer
... 7
Create Parameter Structure 7
Replace Block Parameters with Parameter Structure Fields 7-53
Save and Load Parameter Structure 7
7

Tune Parameters in a Parameter Structure -54
Tune Parameter Structures by Using MATLAB Language 7-55
Create Parameter Structure 7-55
Save and Load Parameter Structure 7-56
Replace Block Parameters with Parameter Structure Fields 7-56
Tune Parameters in a Parameter Structure 7-56
Define and Update InportData 7-58
Required Files e 7-58
Map Inport to Use Square Wave 7-58
Update Inport to Use SawtoothWave 7-60
Define and Update Inport Data by Using MATLAB Language 7-63
Required Files e 7-63
Map Inportto Use Square Wave, 7-63
Update Inport to Use SawtoothWave 7-64
Stimulate Root Inport by Using MATLAB Language 7-66
Inport Data Mapping Limitations 7-68
Display and Filter Hierarchical Signals and Parameters 7-69
Hierarchical Display 7-69
Filtered Displayt e 7-70
Sorted Display 7-71
Troubleshoot Signals Not Accessible by Name 7-73
What This Issue Meanscouiiiiiiinnnnnnnnnnn.. 7-73
Try This Workaround 7-73
Troubleshoot Parameters Not Accessible by Name 7-75
What This Issue Meanscoviiiiiininnn... 7-75
Try This Workaround 7-75
Troubleshoot Instance-Specific Parameters Not Saved 7-76
What This Issue Meanscc0 i, 7-76
Try This Workaround 7-76
Internationalization Issues 7-77

8|

Execution Modes e 8-2

ix

X

Real-Time Application Execution

Contents

Working with the Target Computer Command Line

9

Control Real-Time Application at Target Computer Command Line

Execute Target Computer RTOS Commands at Target Computer
Command Line i 9-3

10|

CPUOverload 10-2
Monitor CPUOverload Rate 10-3
Execution Profiling for Real-Time Applications 10-7
Reduce Build Time for Simulink Real-Time Referenced Models .. 10-13

External Code Integration

11|

External Code Integration of Libraries and C/C++ Code with

Simulink Real-Time Models 11-2
Considerations for Integrating Third-Party Libraries and External Code
into Simulink Real-Time 11-2
Value of Upgrading Your C/C++ Code for Integration into Simulink
Real-Timeo e e e 11-2
Approaches for C/C++ Code Integration into Simulink Real-Time
... 11-3
Build Libraries from Source Code for Simulink Real-Time 11-3
External Code Integration for S-Functions and Simulink Real-Time
... 11-4
Additional C/C++ Project for Simulink Real-Time 11-5
Hello World! Example External Code Integration for Simulink Real-
Time 11-6

Simulation Data Inspector

12

View Data in the Simulation Data Inspector 12-2
ViewLogged Data i 12-2
Import Data from the Workspaceora File 12-3
View ComplexData 12-5
View String Data 12-6
View Frame-BasedData 12-9
View Event-Based Data i, 12-9

Import Data from a CSV File into the Simulation Data Inspector

.. 12-11
BasicFile Format 12-11
Multiple Time Vectorsc .t 12-11
Signal Metadata i 12-12
Import Datafroma CSVFile 12-13

Microsoft Excel Import, Export, and Logging Format 12-15
BasicFile Format 12-15
Multiple Time Vectorsc. it 12-15
Signal Metadatat 12-16
User-Defined Data Typescoo it 12-18
Complex, Multidimensional, and Bus Signals 12-20
Function-Call Signals 12-21
Simulation Parameters i 12-21
Multiple RUnS 12-21

Configure the Simulation Data Inspector 12-23
Logged Data Size and Location 12-23
Archive Behavior and Run Limit 12-24
Incoming Run Names and Location 12-25
Signal MetadatatoDisplay 12-26
Signal Selection on the InspectPane 12-27
How Signals Are Aligned for Comparison 12-27
Colors Used to Display Comparison Results 12-28
Signal Grouping 12-28
Data to Stream from Parallel Simulations 12-29
Options for Saving and Loading Session Files 12-29
Signal Display Units 12-29

How the Simulation Data Inspector Compares Data 12-31
Signal Alignment 12-31
Synchronization 12-32
Interpolation 12-33
Tolerance Specification 12-33
Limitations 12-35

Save and Share Simulation Data Inspector Data and Views 12-36
Save and Load Simulation Data Inspector Sessions 12-36
Share Simulation Data Inspector Views 12-37
Share Simulation Data Inspector Plots 12-37
Create Simulation Data Inspector Report 12-38
Export Data to the WorkspaceoraFile 12-39
Export Video Signaltoan MP4 File 12-40

xi

xii

Inspect and Compare Data Programmatically 12-42

Create a Run and ViewtheData 12-42
Compare Two Signals in the Same Run 12-43
Compare Runs with Global Tolerance 12-44
Analyze Simulation Data Using Signal Tolerances 12-45
Limit the Size of Logged Data 12-48
Limit the Number of Runs Retained in the Simulation Data Inspector
Archive 12-48
Specify a Minimum Disk Space Requirement or Maximum Size for
LoggedData i 12-48
View Data Only During Simulation 12-49
Reduce the Number of Data Points Logged from Simulation 12-49

Execution with MATLAB Scripts

Real-Time Application Objects and Options in the MATLAB

Interface

Target and Application Objects 13-2
Control Real-Time Application by Using Objects 13-2

Use Real-Time Application Object Functions 13-3

Simulink Real-Time Instruments and Instrument Panel

14 oo
Add Instruments to Real-Time Application from Simulink Model
... 14-2
Instrumentation Apps for Real-Time Applications 14-5
Create App Designer Instrument Panels by Using App Generator
" Tip About MLDATK and ST Files .11 148

Create App Designer Instrument Panels by Using Simulink Real-Time
Components e 14-9

Create Standalone Instrument Panel App by Using Application
Compiler e 14-14

Contents

Automated Test with Simulink Test

15|

Examples

Test Real-Time Application in Simulink Test 15-2

Simulink Real-Time Examples

16|

Tune Decimation for File Log Data Without Model Rebuild 16-2
Concurrent Execution on Simulink Real-Time 16-8
Add App Designer App to Inverted Pendulum Model 16-15
Basic App Designer App for Real-Time Application Interface 16-19
Create and Update Instrument Panel for Stateflow Car Transmission
.. 16-22

Connect Triggered Subsystem by Using Thread Trigger 16-30
EtherCAT Protocol with Beckhoff Analog 10 Subordinate Devices

EL3062 and EL4002 16-31
EtherCAT Protocol with Beckhoff Digital IO Subordinate Devices

EL1004 and EL2004 16-36
EtherCAT Protocol Motor Velocity Control with Accelnet Drive . . 16-41
EtherCAT Protocol Motor Position Control with Accelnet Drive .. 16-46
Generate ENI Files for EtherCAT Devices 16-51
EtherCAT Protocol Detect Network Failure and Reset 16-57
EtherCAT Protocol Sequenced Writing SoE Subordinate Device

Configuration Variables 16-62
EtherCAT Protocol Sequenced Writing CoE Subordinate Device

Configuration Variables 16-67
Simple ASCII Encoding/Decoding Loopback Test (with Baseboard

Blocks) 16-72

ASCII Encoding/Decoding Loopback Test 16-73

xiii

xiv

Contents

ASCII Encoding/Decoding Loopback Test (with Baseboard Blocks)

.. 16-74
ASCII Encoding/Decoding Resync Loopback Test 16-76
ASCII Encoding/Decoding Resync Loopback Test (with Baseboard

Blocks) 16-77
Binary Encoding/Decoding Loopback Test 16-79
Binary Encoding/Decoding Loopback Test (with Baseboard Blocks)

.. 16-80
Binary Encoding/Decoding Resync Loopback Test 16-82
Binary Encoding/Decoding Resync Loopback Test (with Baseboard

Blocks) 16-83
Target to Development Computer Communication by Using TCP

.. 16-85
Target to Host Transmission by Using UDP 16-90
Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks

.. 16-94
Synchronize PTP Clocks on Two Target Computers 16-99
Apply Simulink Real-Time Model Template to Create Real-Time

Application 16-103
Insert Event into Execution Profiling Stream 16-105
Create Listeners for Target Computer Events 16-107
Control Real-Time Application by Using C# Code 16-109
Run Real-Time Application by Using Python Script 16-112
Control Color of Lamp on Instrument Panel 16-116
Configure Input and Output Ports for Bit Packing and Unpacking

... 16-121
Run Real-Time Simulation of Permanent Magnet Synchronous Motor

... 16-124
Apply Persistent Variables in Real-Time Applications 16-129
Communicate with Data Distribution Service (DDS) Middleware

... 16-132

Troubleshooting

17|

Troubleshooting Basics 17-2
Troubleshoot Missing Real-Time Tab 17-4
What This Issue Meansciiiiiii i 17-4
Try This Workaround 17-4
Troubleshoot Communication Failure Through Firewall (Windows) . . . 17-5
What This Issue Means it 17-5
Try These Workarounds i, 17-6
Troubleshoot Cannot Load Shared Object on Target Computer 17-14
What This Issue Meansiiiiiiineiiinnen 17-14
Try This Workaround 17-14
Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and
Multidimensional Signals 17-16
What This Issue Means, 17-16
Try This Workaround 17-16
Troubleshoot Signal Data Logging from Inport in Referenced Model . 17-18
What This Issue Meansc. i 17-18
Try This Workaround i, 17-19
Troubleshoot Signal Data Logging from Inport in Referenced Model in
Test Harness i e e 17-20
What This Issue Meanst 17-20
Try This Workaround 17-20
Troubleshoot Signal Data Logging from Send and Receive Blocks 17-22
What This Issue Meansc.iiiiiiineiiinnnnn 17-22
Try This Workaround 17-22
Troubleshoot Signals for Streaming or File Logging 17-23
What This Issue Meanst 17-23
Try These Workarounds00 iiiiinnnnnnnn... 17-23
Troubleshoot Folder Names with Spaces or Special Characters Halt Model
Builds 17-24
What This Issue Meansc.iiiiiiiin i 17-24
Try This Workaround 17-24
Troubleshoot Model Links to Static Libraries or Shared Objects 17-25
What This Issue Means, 17-25
Try This Workaround 17-25
Troubleshoot Build Error for AcceleratorMode 17-27
What This Issue Meansc. i, 17-27
Try This Workaround 17-27
Troubleshoot Long Build Times for Real-Time Application 17-28
What This Issue Meansc.iiiiiiniiiinnenn 17-28

Try This Workaround 17-28

Troubleshoot Working with Persistent Variables 17-30

What This Issue Meansc.uuiiiiiiiiinnnnnnnnnnnn., 17-30

Try This Workaround 17-30

Troubleshoot Unsatisfactory Real-Time Performance 17-31

What This Issue Meansc.i i 17-31

Try This Workaround 17-31
Troubleshoot Overloaded CPU from Executing Real-Time Application

.. 17-33

What This Issue Meansc.iiitiiineiinnnenn 17-33

Try This Workaround 17-33

Troubleshoot Gaps in Streamed Data 17-35

What This Issue Meanst 17-35

Try This Workaround 17-35

Find Simulink Real-Time Support 17-36

Install Simulink Real-Time Software Updates 17-37

xvi Contents

Introduction

1 Introduction

Simulink Real-Time Product Description

Perform rapid control prototyping and hardware-in-the-loop testing

Simulink Real-Time and Speedgoat® take you from simulation to rapid control prototyping (RCP) and
hardware-in-the-loop (HIL) testing in a single click. The products connect to electronic control units
and physical systems with MATLAB® and Simulink.

You can create, control, and instrument real-time applications that run on Speedgoat real-time target
computers directly from your Simulink model or with the MATLAB API and App Designer. You can
simulate and test control designs and the dynamics of electric motors, electric vehicles and
powertrains, wind turbines, power converters, battery management systems, robots and
manipulators, autonomous systems, and other devices.

1-2

Speedgoat Target Computers and 1/0 Hardware

Speedgoat Target Computers and I/0 Hardware

Speedgoat target computers are real-time computers fitted with a set of I/O hardware, Simulink
programmable FPGAs, and communication protocol support. Speedgoat target computers are
optimized for use with Simulink Real-Time and fully support the HDL Coder™ workflow.

Connect a development computer to a Speedgoat target computer that meets your requirements:

form factor, performance, I/O interface, and protocol interface. Speedgoat target computer systems
come with:

+ I/O and protocol interfaces, an Intel® CPU, and optional FPGA hardware, configured and ready to
use

* 1/O cables, terminal boards, Simulink driver blocks, documentation, and a loopback wiring harness
that facilitates acceptance testing for each I/O module

* The Simulink Real-Time RTOS preinstalled on the target computer

Hardware-In-the-Loop (HIL) Simulators and Rugged Units for Controls (RCP), DSP, and
Vision Prototyping

1-3

1 Introduction

ez,
L]

1-4

Performance real-time target machine

- Ideal for office and lab use

- Highest performance Intel CPUs and Xilinx FPGAs
- Large I/O expansion flexibility

- For HIL simulation, controls, and vision prototyping

Mobile real-time target machine

- Ideal for field, and in-vehicle use

- High performance Intel CPUs and Xilinx FPGAs

- Stackable to install up to 14 I/O modules

- Rugged and fanless, extended temperature support

Baseline real-time target machine

- |deal for office, lab, and in-vehicle use

- High performance Intel CPUs and Xilinx FPGAs
- Stackable to install up to 7 I/O modules

- Academia offering makes it ideal for classroom

Unit real-time target machine

- Ideal for office, lab and field use and embeeded
deployment

- High performance Intel CPUs

- Rugged and fanless, extended temperature support

Model Architectures

FPGA Models

* “Speedgoat FPGA Support with HDL Workflow Advisor” on page 2-2
» “Interrupt Configuration” on page 2-4

2 FPGA Models

Speedgoat FPGA Support with HDL Workflow Advisor

2-2

Use Simulink Real-Time and HDL Coder to implement Simulink algorithms and configure I/O
functionality on Speedgoat Simulink-Programmable I/O modules. For an example that shows the
development workflow for FPGA I/O modules, see “FPGA Programming and Configuration on
Speedgoat Simulink-Programmable 1/0 Modules” (HDL Coder).

When you open the HDL Workflow Advisor in HDL Coder and run the Simulink Real-Time FPGA
I/0 workflow, you generate a Simulink Real-Time interface subsystem. The subsystem mask controls
the block parameters. Do not edit the parameters directly. The FPGA I/O board block descriptions are
for informational purposes only.

Speedgoat Simulink-Programmable 1/0 Module Support

Speedgoat Simulink-Programmable I/0 modules are part of Speedgoat target computer systems. To
run the Simulink Real-Time FPGA I/0 workflow, install the Speedgoat I/O Blockset and the
Speedgoat HDL Coder Integration Packages. You can then choose the Target platform and run the
workflow to generate a Simulink Real-Time interface subsystem. To see the documentation for the
integration packages, enter this command at the MATLAB command prompt.

speedgoat.hdlc.doc

To learn about See links

The integration packages and how you can install |See Speedgoat - HDL Coder Integration

them. Packages.

Speedgoat I/O modules that are supported with |See Speedgoat Real-Time FPGA Application
the HDL Workflow Advisor. Support from HDL Coder.

Applications and use cases See Common Use Cases and Applications.
Supported interfaces for various types of I/O See Supported Interfaces.

connectivity and protocols as well as fundamental
functionality such as PCle read/write and DMA.

Provided examples for all supported I/O modules |See Speedgoat I/O Examples.
and functionality

Prepare for FPGA Workflow

To work with FPGAs in the Simulink Real-Time environment, install:

« HDL Coder and Simulink Real-Time.

+ Xilinx® design tools with specific tool and version listed in “HDL Language Support and Supported
Third-Party Tools and Hardware” (HDL Coder). You must also set up the path to the tool by using
the hdlsetuptoolpath function.

* Speedgoat I/O Blockset and the Speedgoat HDL Coder Integration Packages.
* Speedgoat FPGA I/O module in the Speedgoat target machine.

You can use the workflow in HDL Coder to generate HDL code for your FPGA target device.

https://www.speedgoat.com/help/hdlcoder/page/index
https://www.speedgoat.com/help/hdlcoder/page/index
https://www.mathworks.com/hardware-support/real-time-fpga-applications.html
https://www.mathworks.com/hardware-support/real-time-fpga-applications.html
https://www.speedgoat.com/help/hdlcoder/page/refentry_usecases
https://www.speedgoat.com/help/hdlcoder/page/refentry_interfaces
https://www.speedgoat.com/help/hdlcoder/page/refentry_example

Speedgoat FPGA Support with HDL Workflow Advisor

See Also

Related Examples

. “FPGA Programming and Configuration on Speedgoat Simulink-Programmable I/O Modules”
(HDL Coder)

More About

. “HDL Language Support and Supported Third-Party Tools and Hardware” (HDL Coder)
. “Tool Setup” (HDL Coder)

External Websites

. www.speedgoat.com

2-3

https://www.speedgoat.com

2 FPGA Models

Interrupt Configuration

2-4

Simulink Real-Time software schedules the real-time application by using either the internal timer of
the Speedgoat target machine (default) or an interrupt from an I/O board. You can use your
Speedgoat FPGA board to generate an interrupt. You can:

* Schedule execution of the real-time application based on this interrupt (synchronous execution).
For this method, you must generate the interrupt periodically.

* Execute a designated subsystem in your real-time application (asynchronous execution).

To use FPGA-based interrupts, set up and configure the FPGA domain and Simulink Real-Time domain
models. For more information, see “Speedgoat Target Computers and I/O Hardware” on page 1-3.

Functional Mock-up Units and Simulink
Real-Time

* “Apply Functional Mock-up Units by Using Simulink Real-Time” on page 3-2
* “Compile Source Code for Functional Mock-up Units” on page 3-3

3 Functional Mock-up Units and Simulink Real-Time

Apply Functional Mock-up Units by Using Simulink Real-Time

After you create a model that contains an FMU block, you can build and download the model to a
target computer by using Simulink Real-Time. These limitations apply:

* Simulink Real-Time supports FMU blocks for Co-Simulation mode. Simulink Real-Time does not
support FMU blocks for Model Exchange mode.

* Simulink Real-Time does not support FMU blocks within a referenced model. FMU blocks must be
at the top level of the model.

* Simulink Real-Time generates a mask dialog box that contains both numeric-valued and string-
valued parameters. Simulink Real-Time generates code for only numeric- valued parameters.

To convert a Simulink model that contains FMU blocks to a Simulink Real-Time model, set the model
configuration parameters to values compatible with real-time execution:

* Inthe Code Generation pane, set System target file to slrealtime.tlc.
* In the Solver pane:

* Set Type to Fixed-step.
* Set Fixed-step size to a step size compatible with the real-time requirements of your model.

» Generate a shared object SO file by using the QNX® Neutrino® tools for the FMU. For more
information, see slrealtime. fmu.compileFMUSources.

You can then build and download the model to a target computer and run the real-time application.
This process loads the required FMU binary files on the target computer. For more information about
creating the FMU files, see “Compile Source Code for Functional Mock-up Units” on page 3-3.

To open an example model that contains FMU blocks running in Simulink Real-Time, in the MATLAB
Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt ex vanderpol'))

See Also
FMU

More About
. “Import FMUs”

External Websites
. https://fmi-standard.org/

3-2

https://fmi-standard.org/

Compile Source Code for Functional Mock-up Units

Compile Source Code for Functional Mock-up Units

When you build a model that includes FMU blocks, you must compile the FMU source code by using
the QNX Neutrino compiler qcc or g++. This compiler creates shared object SO files that you include
in the FMU. This process makes sure that the FMU contains the code to run on a Simulink Real-Time
target computer. For more information, see “Apply Functional Mock-up Units by Using Simulink Real-
Time” on page 3-2.

Implement the FMU Block in Model

To implement the vanDerPol block in the Simulink model by using the FMU, specify the FMU name
for the block. Open the model slrt_ex vanderpol, double-click the FMU block vanDerPol, and
select the vanDerPol. fmu file for the FMU name block parameter.

Build the model, load the real-time application on the target computer, and run the real-time
application.

Compile FMU File That Contains Source Code

The slrealtime. fmu.compileFMUSources function compiles an FMU file that contains source
code. The process outputs an FMU file and Simulink Real-Time binary file in the same folder as the
input FMU file and appends an _slrt suffix to the output file name. This example selects an FMU file
to compile and overwrites previous compiler output.

% copy an example file to the current working folder

mkdir tempdir myFmuDir

cd tempdir

cd myFmuDir

copyfile(...
fullfile(matlabroot, 'toolbox', 'slrealtime’, ...
"examples', 'slrt ex fmu work'))

% create variable to provide path and file name

my file = ['vanDerPol slrt.fmu']

% compile the FMU file and overwrite previous output

slrealtime. fmu.compileFMUSources(my file, 'overwriteBinary',true)

See Also
FMU | slrealtime. fmu.compileFMUSources

More About
. “Import FMUs”

External Websites
. https://fmi-standard.org/

3-3

https://fmi-standard.org/

Third-Party Calibration Support

* “Calibrate Real-Time Application” on page 4-2

* “Prepare ASAP2 Data Description File” on page 4-3

» “Calibrate Parameters with Vector CANape” on page 4-10
* “Vector CANape Limitations” on page 4-12

* “Troubleshoot Vector CANape Operation” on page 4-13

* “Calibrate Parameters with ETAS Inca” on page 4-14

+ “ETAS Inca Limitations” on page 4-16

* “Troubleshoot ETAS Inca Operation” on page 4-17

4 Third-Party Calibration Support

Calibrate Real-Time Application

4-2

Simulink Real-Time supports interaction with third-party calibration tools such as Vector CANape
(www.vector.com) and ETAS Inca (www.etas.com). Use these tools for:

» Parameter display and tuning

* Calibration data saving, restoring, and swapping by page

* Signal value streaming

These tools run in XCP client mode. Simulink Real-Time emulates an electronic control unit (ECU)
operating in XCP server mode. To enable a real-time application to work with the third-party
software:

* Configure the third-party software to communicate with the real-time application as an ECU.

* Provide a standard TCP/IP physical layer between the development and target computers.
Simulink Real-Time supports third-party calibration software only through UDP protocol.

* Generate a real-time application with signal and parameter attributes that are consistent with A2L
(ASAP?2) file generation. See “Configure Model Data Elements for ASAP2 File Generation”.

* Build the model and use the Generate Calibration Files tool to generate model.a2l (ASAP2)
file that the software can load into its database. The generated file contains signal and parameter
access information for the real-time application and XCP-related sections and memory addresses.
See “Generate ASAP2 and CDF Calibration Files”.

Note You cannot configure third-party software for calibration with only the A2L files that Simulink
Coder™ generates. These files do not contain XCP-related sections and memory addresses. Simulink
Real-Time adds this information during the generation of ASAP2 file.

See Also

More About

. “Configure Model Data Elements for ASAP2 File Generation”
. “Prepare ASAP2 Data Description File” on page 4-3

. “Calibrate Parameters with Vector CANape” on page 4-10

. “Calibrate Parameters with ETAS Inca” on page 4-14

. “XCP Client Mode”

External Websites
. www.vector.com
. www.etas.com

https://www.vector.com
https://www.etas.com
https://www.vector.com
https://www.etas.com

Prepare ASAP2 Data Description File

Prepare ASAP2 Data Description File

This example shows how to configure a Simulink Real-Time model so that the build generates an
ASAP2 (A2L) data description file for the real-time application. The real-time application models a
damped oscillator that feeds into 1-D and 2-D lookup tables, which invert and rescale the input
waveform.

This example uses model slrt_ex osc_cal. To open the model, in the MATLAB Command Window,

type:
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt ex osc cal'))

1-D T(u)

> N(En
Gain £L_1D

K Scope1

Gain 1-D Lookup

Table
nooo
i 1s ?
Integrator
Signal Integrator Integrator1
Generator £ DampedOsc
2-D T(u)
>
) Lo)
Gain1 »
) N
» Scope2
-£ SignalGenerator " P
Scope 2-D Lookup
Table

Model sirt_ex_osc_cal
Simulink Real-Time example model

Copyright 1999-2020 The MathWorks, Inc.

4 Third-Party Calibration Support

4| Scope - O X

File Tools View Simulation Help o

@-a4® P =R IO RN T R

Ready Sample based Offzet=0 T=1.000

Prepare ASAP2 Data Description File

4 Scopel — O >

File Tools View Simulation Help o

@-a4® P =R IO SR R 7

Ready Sample based Offzet=0 T=1.000

4 Third-Party Calibration Support

4-6

4 Scopel — O >
File Tools View Simulation Help o

- 4O ®| - AQ- B FH-

Ready Sample based T=1.000

Calibration of parameters reduces the ringing in signals DampedOsc, L_1D, and L 2D.

Initial Setup

Open the model and check for model data.

1 Openslrt ex osc cal

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime', ...
'examples', 'slrt ex osc cal'))

The Model Workspace variables contain these functions:

* Kg — Parameter object for the Gainl block
* DampedOsc, SignalGenerator, L 1D, L 2D — Signal objects for output signals
* LUT 1D obj, LUT 2D obj — 1-D and 2-D lookup tables data respectively
* SignalGenerator — Test input data
2 Set the Default parameter behavior configuration parameter to Tunable.

Prepare ASAP2 Data Description File

3 Inthe Code Mappings Editor - C in Data Defaults, specify the storage class as
PageSwitching for Model parameters under Parameters.

Maodel sid_ex_pac_cal
Sirulnk Real-Time example model

Copyright 19589-2020 The MathWarks, Inc.

2] J

Code Mappings - C (7 T

Data Defaults Parameters Data Stores Signals/States

Filter contents |

Inports and Qutports
Signals
' Parameters
[;H Model parameters ‘Auto” will be tunable PageSwitching

[;‘.’é.] External parameter objects ‘Auto” will be tunable Default

Note The model default setting for parameters sets the storage class as PageSwitching.

Set Up Parameters

Set up parameter tuning by using Simulink parameter objects.

1 Inslrt_ex osc_cal, on the Modeling tab, click Design > Model Explorer .

Select Model Workspace in the Model Hierarchy pane.
Make sure that the Kg parameter object exists and has these properties:

* Value — 400
* Data type — double
4 If the parameter object does not exist, add it. On the toolbar, click the Add Simulink Parameter
buttonl.
5 Openslrt ex osc cal/Gainl.
Make sure that you have set the Gain value to the parameter object Kg.

Set Up Signals

As a best practice, set up signal viewing by using Simulink signal objects.

Inslrt_ex osc_cal, on the Modeling tab, click Design > Model Explorer .

4 Third-Party Calibration Support

4-8

Select Model Workspace in the Model Hierarchy pane.
Make sure that the DampedOsc signal object exists and has these properties:

* Minimum — -10

* Maximum — 10

* Data type — double

Make sure that the SignalGenerator signal object exists and has these properties:

* Minimum — -10

* Maximum — 10

* Data type — double

Make sure that the L 1D signal object exists and has these properties:

* Minimum — -15

* Maximum — 15

* Data type — double

Make sure that the L 2D signal object exists and has these properties:

¢ Minimum — -15
¢ Maximum — 15
* Data type — double

If a signal does not exist, add it. On the toolbar, click the Add Simulink Signal button [t
For each signal, open its Properties dialog box.

Make sure that you selected the Signal name must resolve to Simulink signal object and the
Test point check boxes.

Set Up Lookup Tables

The example model contains 1-D and 2-D lookup tables.

1
2

Open the block parameters for the 1-D Lookup Table block.
In the Table and Breakpoints pane, verify these settings:

* Number of table dimensions — 1

* Data specification — Lookup table object

* Name — LUT 1D obj

Open the block parameters for the 2-D Lookup Table block.
In the Table and Breakpoints pane, check these settings:

* Number of table dimensions — 2
* Data specification — Lookup table object
* Name — LUT 2D obj

To view the contents of the lookup tables, click Edit table and breakpoints, and then click Plot >
Mesh.

Prepare ASAP2 Data Description File

Generate Data Description File

On the REAL-TIME tab, select RUN ON TARGET > Build Application.

2 Onthe C CODE tab, select Share > Generate Calibration Files. Use the tool to generate the
required version of ASAP2 file. For more information about using the tool, see “Generate ASAP2
and CDF Calibration Files”.

You can perform the same operation by using the coder.asap2.export function.
coder.asap2.export('slrt ex osc cal', 'MapFile','slrt ex osc cal slrealtime rtw/slrt ex osc cal','Comments',false);

3 Connect to the target by using a third-party calibration tool.

See Also
n-D Lookup Table | coder.asap2.export

More About

. “Generate ASAP2 and CDF Calibration Files”

. “Calibrate Parameters with Vector CANape” on page 4-10
. “Calibrate Parameters with ETAS Inca” on page 4-14

External Websites
. www.vector.com
. Www.etas.com

4-9

https://www.vector.com
https://www.etas.com

4 Third-Party Calibration Support

Calibrate Parameters with Vector CANape

4-10

This example shows how to view signals and tune parameters by using Vector CANape. You must
have already completed the steps in “Prepare ASAP2 Data Description File” on page 4-3.

You also must be familiar with the Vector CANape user interface. For information about the user
interface, see the vendor documentation (www.vector.com).

Prepare Project

Build and download the real-time application slrt _ex osc_cal.

Start the real-time application by selecting REAL-TIME > RUN ON TARGET > Start
Application.

Disconnect the connection from MATLAB:

tg = slrealtime
disconnect(tg)

You can now connect to third-party calibration tools.
Open Vector CANape.
Create a Vector CANape project with project name slrt_ex osc_cal.

Accept the default folder.

Prepare Device

1

From the extracted slrt_ex osc cal.a2l, create an XCP device named
slrt _ex osc cal slrt.

Do not configure dataset management.

Select your local computer Ethernet adapter as the Ethernet channel.
Accept the remaining defaults.

Upload data from the device.

Configure Signals and Parameters

Open device slrt_ex osc_cal slrt, and then open slrt ex osc cal.a2l.
Add signals DampedOsc, SignalGenerator, L 1D, and L 2D in separate display windows.
To make the waveform easier to evaluate, set the time and y-axis scaling.

For example, try the following settings for DampedOsc:

* y-axis min home value — —25

* y-axis max home value — 25

* Min home time-axis value — 0 s

* Max home time-axis value — 0.1s
* Time duration — 0.1s

https://www.vector.com

Calibrate Parameters with Vector CANape

4 Open the measurement list.
To set the required sample time for a signal, open the measurement properties for the signal.
Select the required sample time from the measurement mode list.
The default sample time is the base sample time.

6 Add a graphic control on parameter Kg.

Measure Signals and Calibrate Parameters

1 Start the Vector CANape measurement.
2 To shorten the ring time on DampedOsc, L 1D, and L 2D, set parameter Kg to 800.
3 Asrequired, toggle between calibration RAM active and inactive.

When using the Run on Target button on the Simulink Editor Real-Time tab to run the simulation,
there is a time lag of a couple of seconds between the start of the real-time application on the target
computer and the connect model operation on the development computer. If you are examining
signals at or very close to application start, consider using the step-by-step approach to connect
model and then using an SSH connection (for example, using PuTTY) start the real-time application.
For more information, see “Execute Real-Time Application in Simulink External Mode by Using Step-
by-Step Commands” and “Execute Target Computer RTOS Commands at Target Computer Command
Line” on page 9-3.

See Also

More About

. “Prepare ASAP2 Data Description File” on page 4-3
. “Vector CANape Limitations” on page 4-12
. “Troubleshoot Vector CANape Operation” on page 4-13

External Websites

. www.vector.com

4-11

https://www.vector.com

4 Third-Party Calibration Support

Vector CANape Limitations

For Vector CANape, the Simulink Real-Time software does not support:

* Connecting MATLAB to the target computer while using Vector CANape.
* Loading, starting, or stopping the real-time application by using Vector CANape commands.

To load, start, or stop the real-time application on the target computer, use the target computer
command-line interface. For example:

slrealtime load --AppName app name
slrealtime start
slrealtime stop

For more information, see “Target Computer Command-Line Interface”.
* Vector CANape flash programming.
* Multiple simultaneous Vector CANape connections to a single target computer.

Event mode data acquisition has the following limitations:

* Every piece of data that the Simulink Real-Time software adds to the event list slows the real-time
application. The amount of data that you can observe depends on the model sample time and the
speed of the target computer. It is possible to overload the target computer CPU to where data
integrity is reduced.

* You can trace only signals and scalar parameters. You cannot trace vector parameters.

4-12

Troubleshoot Vector CANape Operation

Troubleshoot Vector CANape Operation

My third-party calibration tool (Vector CANape) is not working with the real-time application.

What This Issue Means

You can use the Vector CANape tool to view signals and tune parameters in the real-time application.
For more information, see the steps in “Prepare ASAP2 Data Description File” on page 4-3. In
addition to the limitations listed in “Vector CANape Limitations” on page 4-12, there are various
issues that can prevent the operation of this tool.

Try This Workaround
For Vector CANape tool issues, try these workarounds.
Simulation Data Inspector in Use

Simulation Data Inspector and the third-party calibration tools (Vector CANape and ETAS Inca) are
mutually exclusive. If you use the Simulation Data Inspector to view signal data, you cannot use the
calibration tools. If you use the calibration tools, you cannot use the Simulation Data Inspector to
view signal data.

Client Cannot Connect

Check the IP address of the target computer associated with the model and compare it to the address
stored in the ASAP?2 file.

ASAP2 File Out of Date

When you rebuild a Simulink Real-Time application, update the ASAP2 file loaded in the calibration
tool with the new version of the file. The ASAP?2 file is valid only until the next time that you build the
application.

See Also

More About

. “Prepare ASAP2 Data Description File” on page 4-3
. “Vector CANape Limitations” on page 4-12

External Websites
. MathWorks Help Center website
. www.vector.com

4-13

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.vector.com

4 Third-Party Calibration Support

Calibrate Parameters with ETAS Inca

4-14

This example shows how to view signals and tune parameters by using ETAS Inca. You must have
already completed the steps in “Prepare ASAP2 Data Description File” on page 4-3.

You also must be familiar with the ETAS Inca user interface. For information about the user interface,
see the vendor documentation (www.etas.com).

Prepare Database

1
2

Build and download real-time application slrt _ex osc cal.

Start the real-time application by selecting REAL-TIME > RUN ON TARGET > Start
Application.

Disconnect the connection from MATLAB:

tg = slrealtime

disconnect(tg)

You can then connect to third-party calibration tools.

Open ETAS Inca.

Add an ETAS Inca database by using the folder named SLRTDatabase.
Add subfolders named Experiment, Project, and Workspace.

Prepare Project

Under folder Project, add an ECU project.

When prompted, select A2L file slrt_ex osc_cal.a2l, which is extracted from the project file.
Ignore the prompt for a HEX file.

If you change and rebuild the real-time application, delete the ECU project and recreate it with
the new A2L file.

Prepare Workspace

gua A W N =

Under folder Workspace, add workspace slrt _ex osc cal wksp.

Add project slrt _ex osc cal slrt toworkspace slrt ex osc cal wksp.
When prompted, add an Ethernet system XCP device to the workspace.

Configure the XCP device and initialize it. Autoconfigure the ETAS network.

To upload data from the device hardware, use enhanced operations on memory pages.

Data is uploaded from the real-time application on the target computer.

Prepare Experiment

1
2

Under folder Experiment, add experiment slrt _ex osc cal exp.
Add experiment slrt_ex osc cal exp to workspace slrt ex osc cal wksp.

https://www.etas.com

Calibrate Parameters with ETAS Inca

Configure Signals and Parameters

Start experiment slrt ex osc cal exp.

2 To create graphic controls for the variables, add variables Kg, DampedOsc, SignalGenerator,
L 1D, and L_2D.

3 Add YT oscilloscopes for DampedOsc, SignalGenerator, L 1D, and L 2D.

For each signal, set the sample time to the base sample time of the real-time application (250
ps).

Measure Signals and Calibrate Parameters

1 Start the ETAS Inca measurement.

2 To shorten the ring time on DampedOsc, L 1D, and L 2D, set parameter Kg to 800.

3 Asrequired, toggle between the reference page and the working page.

When using the Run on Target button on the Simulink Editor Real-Time tab to run the simulation,
there is a time lag of a couple of seconds between the start of the real-time application on the target
computer and the connect model operation on the development computer. If you are examining
signals at or very close to application start, consider using the step-by-step approach to connect
model and then using an SSH connection (for example, using PuTTY) start the real-time application.
For more information, see “Execute Real-Time Application in Simulink External Mode by Using Step-

by-Step Commands” and “Execute Target Computer RTOS Commands at Target Computer Command
Line” on page 9-3.

See Also

More About

. “Prepare ASAP2 Data Description File” on page 4-3
. “ETAS Inca Limitations” on page 4-16
. “Troubleshoot ETAS Inca Operation” on page 4-17

External Websites

. Www.etas.com

4-15

https://www.etas.com

4 Third-Party Calibration Support

ETAS Inca Limitations

For ETAS Inca, the Simulink Real-Time software does not support:

4-16

Connecting MATLAB to the target computer while using ETAS Inca.
Loading, starting, or stopping the real-time application by using ETAS Inca commands.

To load, start, or stop the real-time application on the target computer, use the target computer
command-line interface. For example:

slrealtime load --AppName app name
slrealtime start
slrealtime stop

For more information, see “Target Computer Command-Line Interface”.

ETAS Inca flash programming.

Multiple simultaneous ETAS Inca connections to a single target computer.

Tunability of parameters with ExportedGlobal storage class when the model has other
parameters with PageSwitching storage class. As a work around you can:

* Place all the parameters you want to tune in model workspace. Or

* Change the default mapping for storage class from PageSwitching to default. The
PageSwitching storage class is not used, and the page switching functionality is not
available.

Event mode data acquisition has the following limitations:

Every piece of data that the Simulink Real-Time software adds to the event list slows the real-time
application. The amount of data that you can observe depends on the model sample time and the
speed of the target computer. It is possible to overload the target computer CPU to where data
integrity is reduced.

You can trace only signals and scalar parameters. You cannot trace vector parameters.

Troubleshoot ETAS Inca Operation

Troubleshoot ETAS Inca Operation

Investigate issues that can occur when ETAS Inca controls a real-time application.

My third-party calibration tool (ETAS Inca) is not working with the real-time application.

What This Issue Means

You can use the ETAS Inca tool to view signals and tune parameters in the real-time application. For
more information, see the steps in “Prepare ASAP2 Data Description File” on page 4-3. In addition to
the limitations listed in “ETAS Inca Limitations” on page 4-16, there are various issues that can
prevent the operation of this tool.

Try This Workaround

For ETAS Inca tool issues, try these workarounds.

Simulation Data Inspector in Use

Simulation Data Inspector and the third-party calibration tools (Vector CANape and ETAS Inca) are
mutually exclusive. If you use the Simulation Data Inspector to view signal data, you cannot use the
calibration tools. If you use the calibration tools, you cannot use the Simulation Data Inspector to
view signal data.

Client Cannot Connect

Check the IP address of the target computer associated with the model and compare it to the address
stored in the ASAP?2 file.

ASAP2 File Out of Date

When you rebuild a Simulink Real-Time application, update the ASAP2 file loaded in the calibration
tool with the new version of the file. The ASAP?2 file is valid only until the next time that you build the
application.

Cannot Disable Freeze Mode

Remove the dataset file from the target file system and reset the parameters to the original values
specified in your model. The dataset file is named flashdata model name.dat.

Transport Layer Failure

When a transport layer failure occurs, ETAS Inca can display this message:
ERROR: Transport Layer Failure, Inconsistent MsgCounter
This error appears in ETAS Inca when the incorrect setting is used for 'Counter Consistency

Mode'. Make sure that the 'Counter Consistency Mode' issetto 'one counter for all
CTOs+DTOs"' in the hardware settings for your experiment.

4-17

4 Third-Party Calibration Support

See Also

More About

. “Prepare ASAP2 Data Description File” on page 4-3
. “ETAS Inca Limitations” on page 4-16

External Websites

. MathWorks Help Center website
. www.etas.com

4-18

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.etas.com

ASAM XIL API Support

+ “Install the Simulink Real-Time Support Package for ASAM XIL Standard” on page 5-2
* “Classes and Methods of ASAM XIL API” on page 5-4

5 ASAM XIL API Support

Install the Simulink Real-Time Support Package for ASAM XIL
Standard

5-2

Simulink Real-Time supports a subset of the ASAM XIL API. This API enables you to define ports for
test cases. To use these APIs in Simulink Real-Time, install the Simulink Real-Time XIL API support

package by using the Add On Explorer. For a list of support ASAM XIL APIs in the support package,
see “Classes and Methods of ASAM XIL API” on page 5-4.

Prerequisites for Using ASAM XIL API

To enable support for the ASAM XIL AP], install the Simulink Real-Time XIL API support package.
This support package implements the ASAM XIL API standard for Simulink Real-Time target
computers.

The Simulink Real-Time Support Package for ASAM XIL Standard implements the ASAM XIL standard
API for Simulink Real-Time target computers. Using this C# API, you can run real-time hardware-in-
the-loop (HIL) tests on a Simulink Real-Time target computer by using test cases created from any
test automation software with the XIL framework. Also, you can use the support package to develop a
custom XIL test framework for Simulink Real-Time.

1 In MATLAB, select Home > Add-Ons > Get Add-Ons and install the Simulink Real-Time XIL
API support package.

2 After support package installation, verify that the manifest file MathWorksXILServer. imf that
is located under C:\ProgramData\ASAM\XIL\Implementation provides the correct Assembly
path.

3 Register MATLAB as the automation server. Share the MATLAB session. In the MATLAB
Command Window, type:

comserver('register', 'User', 'current');
enableservice('AutomationServer', true);

4 Build the model. The real-time application MLDATX file is required for setting up test cases.
Create a configuration file for the test bench by using the createPortConfigureFile function.

After installing the support package, the PDF documentation for the support package is available in
the support package folder.

cd(fullfile(matlabshared.supportpkg.getSupportPackageRoot, ...
'toolbox', 'slrealtime', 'xil'))

See Also
createPortConfigureFile

Related Examples
. “Control Real-Time Application by Using C# Code” on page 16-109

More About
. “Classes and Methods of ASAM XIL API” on page 5-4

https://www.asam.net/standards/detail/xil/

Install the Simulink Real-Time Support Package for ASAM XIL Standard

External Websites
e ASAM XIL

5-3

https://www.asam.net/standards/detail/xil/

5 ASAM XIL API Support

Classes and Methods of ASAM XIL API

In this section...

“MAPort Class” on page 5-4

“ECUMPort Class” on page 5-5
“ECUCPort Class” on page 5-6
“CaptureEvent Class” on page 5-7
“Capture Class” on page 5-7
“WatcherFactory Class” on page 5-7
“ConditionWatcher Class” on page 5-8
“CapturingFactory Class” on page 5-8
“CapturingResult Class” on page 5-8
“CycleNumberDuration Class” on page 5-9
“TimeSpanDuration Class” on page 5-9
“DurationFactory Class” on page 5-9
“DurationWatcher Class” on page 5-9
“ConditionWatcher Class” on page 5-10
“MAPORTFactory Class” on page 5-10
“TestBench Class” on page 5-11
“SignalFactory Class” on page 5-11
“SignalGeneratoryFactory Class” on page 5-14

“SignalGenerator Class” on page 5-14

To interface with test cases, the Simulink Real-Time XIL API support package supports a subset of the
ASAM XIL API. The tables include API methods that you can use with the support package.

The Simulink Real-Time XIL API support package supports XIL stimulation STI/STZ for v2.0-2.2.

MAPort Class
Class Method Introduced
in Support
Package
Version
MAPort CheckVariableNames(variableNames :A UNICODE2STRING[]) :A U|1.0
NICODE2STRINGI]
MAPort Configure(config :MAPortConfig, forceConfig :A BOOLEAN) :void |1.0
MAPort GetDataType(variableName :A UNICODE2STRING) :DataType 1.0
MAPort GetVariableInfo(variableName :A UNICODE2STRING) :MAPortVari |1.0
ableInfo
MAPort IsReadable(variableName :A UNICODE2STRING) :A BOOLEAN 1.0
MAPort IsWritable(variableName :A UNICODE2STRING) :A BOOLEAN 1.0

Classes and Methods of ASAM XIL API

Class Method Introduced
in Support
Package
Version

MAPort LoadConfiguration(filepath :A. UNICODE2STRING) :MAPortConfig |1.0

MAPort StartSimulation() :void 1.0

MAPort StopSimulation() :void 1.0

MAPort getConfiguration() :MAPortConfig 1.0

MAPort getState() :MAPortState 1.0

MAPort getTaskInfos() :TaskInfo[] 1.0

MAPort getTaskNames() :A UNICODE2STRINGI] 1.0

MAPort getVariableNames() :A UNICODE2STRINGI] 1.0

MAPort Dispose 1.0

MAPort Disconnect 1.0

MAPort IBaseValue Read(string variableName); 1.1

MAPort void Write(string variableName, IBaseValue value); 1.1

MAPort ICapture CreateCapture(string taskName) 1.1

MAPort void MAPort::DownloadParameterSets(IList<string> filepaths) 1.2

ECUMPort Class

Class Method Introduced
in Support
Package
Version

ECUMPort CheckVariableNames 1.0

ECUMPort Configure 1.0

ECUMPort CreateCapture 1.0

ECUMPort GetDataType 1.0

ECUMPort GetMeasuringVariables 1.0

ECUMPort GetVariablelnfo 1.0

ECUMPort IsReadable 1.0

ECUMPort LoadConfiguration 1.0

ECUMPort Read 1.0

ECUMPort SetMeasuringVariables 1.0

ECUMPort StartMeasurement 1.0

ECUMPort StopMeasurement 1.0

ECUMPort getConfiguration 1.0

ECUMPort getState 1.0

ECUMPort getTaskInfos 1.0

3-5

5 ASAM XIL API Support

Class Method Introduced
in Support
Package
Version
ECUMPort getTaskNames 1.0
ECUMPort getVariableNames 1.0
ECUMPort Disconnect 1.0
ECUMPort Dispose 1.0
ECUCPort Class
Class Method Introduced
in Support
Package
Version
ECUCPort CalculateRefPageCRC 1.0
ECUCPort CalculateWorkPageCRC 1.0
ECUCPort CheckVariableNames 1.0
ECUCPort Configure 1.0
ECUCPort GetDataType 1.0
ECUCPort GetVariablelnfo 1.0
ECUCPort IsReadable 1.0
ECUCPort IsWriteable 1.0
ECUCPort LoadConfiguration 1.0
ECUCPort NumberOfPages 1.0
ECUCPort Read 1.0
ECUCPort StartOnlineCalibration 1.0
ECUCPort StopOnlineCalibration 1.0
ECUCPort SwitchToRefPage 1.0
ECUCPort SwitchToWorkPage 1.0
ECUCPort Write 1.0
ECUCPort getConfiguration 1.0
ECUCPort getState 1.0
ECUCPort getVariableNames 1.0
ECUCPort Disconnect 1.0
ECUCPort Dispose 1.0

Classes and Methods of ASAM XIL API

CaptureEvent Class

CaptureEvent |getTimeStamp 1.3
CaptureEvent [setTimeStamp 1.3
CaptureEvent |getType 1.3

Capture Class

Capture Fetch(whenFinished :A BOOLEAN) :CaptureResult 1.0
Capture Start(writer :CaptureResultWriter) :void 1.0
Capture getCaptureResult() :CaptureResult 1.0
Capture getState() :CaptureState 1.0
Capture setVariables(variableNames :A UNICODE2STRING]I]) :void 1.0
Capture getStartTriggerWatcher 1.3
Capture getStopTriggerWatcher 1.3
Capture getRetriggering 1.3
Capture setRetriggering 1.3
Capture SetStartTrigger 1.3
Capture SetStopTrigger 1.3

WatcherFactory Class

WatcherFactor | CreateConditionWatcher(condition :A UNICODE2STRING, 1.3
y defines :StringNamedCollection) :ConditionWatcher

WatcherFactor | CreateDurationWatcher(duration :A FLOAT64) :DurationWatcher 1.3
y

WatcherFactor |CreateDurationWatcherByCycleNumber(cycleNumber :A INT64) :D |1.3
y urationWatcher

WatcherFactor |CreateDurationWatcherByTimeSpan(timeSpan :A FLOAT64) :Durati|1.3
y onWatcher

5 ASAM XIL API Support

ConditionWatcher Class

ConditionWatc |getCondition 1.3
her
ConditionWatc |setCondition 1.3
her
ConditionWatc |getDefines 1.3
her
ConditionWatc |setDefines 1.3
her
ConditionWatc |getTimeOut 1.3
her
ConditionWatc |setTimeOut 1.3
her

CapturingFactory Class

CapturingFact |CreateCaptureResult 1.0
ory
CapturingFact |ICaptureResultMDFWriter 1.2
ory CapturingFactory::CreateCaptureResultMDFWriter()
CapturingFact |ICaptureResultMDFWriter 1.2
ory CapturingFactory ::CreateCaptureResultMDFWriterByFileName(str

ing fileName)

CapturingResult Class

CaptureResult |void CaptureResult::Save(ICaptureResultWriter writer) 1.2
CaptureResult |setEvents 1.3
CaptureResult |[getEvents 1.3

Classes and Methods of ASAM XIL API

CycleNumberDuration Class

CycleNumber |getCycleNumber 1.3
Duration
CycleNumber |setCycleNumber 1.3
Duration
CycleNumber |getType 1.3
Duration

TimeSpanDuration Class

TimeSpanDur |getTimeSpan 1.3
ation
TimeSpanDur |setTimeSpan 1.3
ation
TimeSpanDur |getType 1.3
ation

DurationFactory Class

DurationFacto
ry

CreateCycleNumberDuration

DurationFacto
ry

CreateTimeSpanDuration

DurationWatcher Class

DurationWatc
her

getDuration

1.3

5-9

5 ASAM XIL API Support

DurationWatc |setDuration 1.3
her
DurationWatc |getDuration2 1.3
her

ConditionWatcher Class

ConditionWatc |getCondition 1.3
her

ConditionWatc |setCondition 1.3
her

ConditionWatc |getDefines 1.3
her

ConditionWatc |setDefines 1.3
her

ConditionWatc |getTimeOut 1.3
her

ConditionWatc |setTimeOut 1.3
her

MAPORTFactory Class

MAPortFactor |CreateMAPort 1.0

y

MAPortFactor |CreateMAPortBreakpoint See note.
y

MAPortFactor |CreateMAPortBreakpoint2 See note.
y

Note The signature for the CreateMAPortBreakpoint method is incorrect in ASAM XIL v2.1.0. The
signature for the CreateMAPortBreakpoint2 is the corrected version of the method and is contained

in ASAM XIL v2.1.1.

5-10

Classes and Methods of ASAM XIL API

TestBench Class

Class Method Introduced
in Support
Package
Version
Testbench WatcherFactory 1.3
Testbench DurationFactory 1.3
Testbench MAPortFactory 1.3
Testbench ValueFactory 1.3
Testbench CapturingFactory 1.3
Testbench ECUCPortFactory 1.3
Testbench ECUMPortFactory 1.3
Testbench SignalGeneratorFactory 1.3
Testbench BuildNumber 1.3
Testbench MajorNumber 1.3
Testbench VendorName 1.3
Testbench ProductName 1.3
Testbench ProductVersion 1.3
Testbench AvailablePortTypes 1.3
Testbench MinorNumber 1.3
Testbench RevisionNumber 1.3
Testbench SignalFactory 1.3
Testbench SymbolFactory 1.3
Testbench DurationFactory 1.3

SignalFactory Class

Class Method Introduced
in Support
Package
Version

SignalFactory |CreateConstSegment():IConstSegment 1.1

SignalFactory |CreateConstSegment(IConstSymbol duration, 1.1
IWatcher stopTrigger, ISymbol
value):IConstSegment

SignalFactory |CreateDataFileSegment():[DataFileSegment 1.1

5-11

5 ASAM XIL API Support

5-12

Class Method Introduced
in Support
Package
Version
SignalFactory |CreateDataFileSegmentByParameters(string 1.1
fileName, string timeVectorName, string
dataVectorName, string channelSource, string
channelPath, string groupName, string
groupSource, string groupPath, IConstSymbol
duration, InterpolationTypes interpolation,
IConstSymbol start, IWatcher stopTrigger):
IDataFileSegment
SignalFactory |CreateExpSegment():[ExpSegment 1.1
SignalFactory |CreateExpSegmentBySymbols(IConstSymbol 1.1
duration, ISymbol start, ISymbol stop, IWatcher
stopTrigger, ISymbol tau):IExpSegment
SignalFactory |CreateldleSegment():IIdleSegment:IIdleSegment |1.1
SignalFactory |CreateldleSegmentByDuration(IConstSymbol 1.1
duration, IWatcher stopTrigger):1ldleSegment
SignalFactory |CreateLoopSegment():ILoopSegment 1.1
SignalFactory |CreateLoopSegmentByLoopCount(ulong 1.1
loopCount):ILoopSegment
SignalFactory |CreateNoiseSegment():INoiseSegment 1.1
SignalFactory |CreateNoiseSegmentBySymbols(IConstSymbol 1.1
duration, ISymbol mean, ISymbol sigma,
IConstSymbol seed, IWatcher stopTrigger):
INoiseSegment
SignalFactory |CreateOperationSegment():IOperationSegment |1.1
SignalFactory |CreateOperationSegmentBySignalSegmentsAndO |1.1
perationTypes(ISignalSegment leftSegment,
ISignalSegment rightSegment, OperationTypes
operation): IOperationSegment
SignalFactory |CreatePulseSegment():IPulseSegment 1.1
SignalFactory |CreatePulseSegmentBySymbols(IConstSymbol 1.1
duration, ISymbol offset, ISymbol amplitude,
ISymbol period, ISymbol dutyCycle, ISymbol
phase, IWatcher stopTrigger):[PulseSegment
SignalFactory |CreateRampSegment():IRampSegment 1.1
SignalFactory |CreateRampSegmentBySymbols(IConstSymbol 1.1
duration, ISymbol start, ISymbol
stop):IRampSegment
SignalFactory |CreateRampSlopeSegment():IRampSlopeSegmen |1.1

t

Classes and Methods of ASAM XIL API

Class Method Introduced
in Support
Package
Version
SignalFactory |CreateRampSlopeSegmentBySymbols(IConstSym |1.1
bol duration, ISymbol offset, ISymbol slope,
IWatcher stopTrigger):IRampSlopeSegment
SignalFactory |CreateSawSegment():ISawSegment 1.1
SignalFactory |CreateSawSegmentBySymbols(IConstSymbol 1.1
duration, ISymbol offset, ISymbol amplitude,
ISymbol period, ISymbol dutyCycle, ISymbol
phase, IWatcher stopTrigger):ISawSegment
SignalFactory |CreateSegmentSignalDescription():ISegmentSign |1.1
alDescription
SignalFactory |CreateSegmentSignalDescriptionByName(string (1.1
name):ISegmentSignalDescription
SignalFactory |CreateSignalDescriptionSet():ISignalDescriptionS |1.1
et
SignalFactory |CreateSignalDescriptionSetByReader(ISignalDes |1.1
criptionSetReader reader):ISignalDescriptionSet
SignalFactory |CreateSignalDescriptionSetSTIReaderByFileNam |1.1
e(string
fileName):ISignalDescriptionSetSTIReader
SignalFactory |CreateSignalDescriptionSetSTIWriterByFileNam |[1.1
e(string
fileName):ISignalDescriptionSetSTIWriter
SignalFactory |CreateSignalDescriptionSetSTZReaderByFileNa |[1.1
me(string
fileName):ISignalDescriptionSetSTZReader
SignalFactory |CreateSignalDescriptionSetSTZWriterByFileNam |1.1
e(string
fileName):ISignalDescriptionSetSTZWriter
SignalFactory |CreateSignalValueSegment():ISignalValueSegmen|1.1
t
SignalFactory |CreateSignalValueSegmentByValueAndInterpolati (1.1
on(ISignalValue value, InterpolationTypes
interpolation):ISignalValueSegment
SignalFactory |CreateSineSegment():ISineSegment 1.1
SignalFactory |CreateSineSegmentBySymbols(IConstSymbol 1.1

duration, ISymbol offset, ISymbol amplitude,
ISymbol period, ISymbol phase, IWatcher
stopTrigger):ISineSegment

5-13

5 ASAM XIL API Support

5-14

SignalGeneratoryFactory Class

Class Method Introduced
in Support
Package
Version

SignalGenerat | CreateSignalGenerator():ISignalGenerator 1.1

orFactory

SignalGenerat | CreateSignalGeneratorSTIReader():ISignalGener |1.1

orFactory atorSTIReader

SignalGenerat | CreateSignalGeneratorSTIReaderByFileName(str 1.1

orFactory ing fileName):ISignalGeneratorSTIReader

SignalGenerat | CreateSignalGeneratorSTIWriter():ISignalGenera |1.1

orFactory torSTIWriter

SignalGenerat | CreateSignalGeneratorSTIWriterByFileName(stri 1.1

orFactory ng fileName):ISignalGeneratorSTIWriter

SignalGenerat | CreateSignalGeneratorSTZReader():ISignalGener |1.1

orFactory atorSTZReader

SignalGenerat | CreateSignalGeneratorSTZReaderByFileName(st |1.1

orFactory ring fileName):ISignalGeneratorSTZReader

SignalGenerat | CreateSignalGeneratorSTZWriter():ISignalGener |1.1

orFactory atorSTZWriter

SignalGenerat | CreateSignalGeneratorSTZWriterByFileName(stri|1.1

orFactory ng fileName):ISignalGeneratorSTZWriter

SignalGenerator Class

Class Method Introduced
in Support
Package
Version

SignalGenerat | Load(ISignalGeneratorReader reader) 1.1

or

SignalGenerat | Save(ISignalGeneratorWriter writer) 1.1

or

SignalGenerat |Assignments 1.1

or

SignalGenerat | SignalDescriptionSet 1.1

or

SignalGenerat |State 1.1

or

SignalGenerat | DestryOnTarget() 1.1

or

SignalGenerat | Dispose() 1.1

or

Classes and Methods of ASAM XIL API

Class Method Introduced
in Support
Package
Version

SignalGenerat | LoadToTarget() 1.1

or

SignalGenerat | Pause() 1.1

or

SignalGenerat |Start() 1.1

or

SignalGenerat | Stop() 1.1

or

SignalGenerat | Load(out ISignalGenerator signalGenerator) 1.1

orSTIReader

SignalGenerat | Save(ISignalGenerator signalGenerator) 1.1

orSTIWriter

SignalGenerat | Load(out ISignalGenerator signalGenerator) 1.1

orSTZReader

SignalGenerat | Save(ISignalGenerator signalGenerator) 1.1

orSTZWriter

See Also

createPortConfigureFile

More About

. “Install the Simulink Real-Time Support Package for ASAM XIL Standard” on page 5-2

External Websites

. ASAM XIL

5-15

https://www.asam.net/standards/detail/xil/

Real-Time Application Setup

17

Real-Time Application Environment

* “Select Default Target Computer” on page 6-2
» “Set Up Target Computer Ethernet Connection” on page 6-3
* “Target Computer Update, Reboot, and Startup Application” on page 6-5

6 RealTime Application Environment

Select Default Target Computer

6-2

When you start Simulink Real-Time Explorer for the first time, it opens a default target computer
node, TargetPC1l. You can configure this node for a target computer, then connect the node to the
target computer. You can add other target computer nodes and designate one of them as the default
target computer.

Select Default Target Computer

To set a target computer node as the default.

1 Select a nondefault target computer node from the Targets Tree panel in Simulink Real-Time
Explorer.

2 In the Target Configuration tab, select the Default checkbox.

If you delete a default target computer node, the target computer node preceding it becomes the
default target computer node. The last target computer node becomes the default target
computer node and you cannot delete it.

Command-Line Interface and Target Computer

To use the Simulink Real-Time command-line interface to work with the target computer, you must
indicate the target computer with which the command is interacting. If you do not identify a
particular target computer, the Simulink Real-Time software uses the default target computer.

Targets Object and Target Computers

The Targets object manages collective and individual target computer environments. For more
information, see “Set Up Target Computer Ethernet Connection” on page 6-3.

When you call the Targets object getTargetSettings function without arguments, the
constructor gets the real-time environment settings for the default target computer.

my tgs = slrealtime.Targets();
my tgs settings = getTargetSettings(my tgs);

When you call the Target object slrealtime function without arguments, the constructor uses the
link properties of the default target computer to communicate with the target computer.

tg = slrealtime;

See Also
Simulink Real-Time Explorer | Targets | getDefaultTargetName | setDefaultTargetName |
Target | slrealtime

Set Up Target Computer Ethernet Connection

Set Up Target Computer Ethernet Connection

To install PCI bus Ethernet protocol interface hardware in your Speedgoat target computer, see the
Speedgoat website at www.speedgoat.com.

Development Target
computer computer

Ethernet link

Connect Ethernet Cables

To configure the target computer Ethernet hardware:

1 [f the target computer already contains one or more Ethernet cards, to get a list of these
Ethernet cards, see your Speedgoat target machine documentation.

2 Assign a static IP address to the target computer Ethernet card by using Simulink Real-Time
Explorer.

Unlike the target computer, the development computer network adapter card can have a dynamic
host configuration protocol (DHCP) address and can be accessed from the network. Configure
the DHCP server to reserve static IP addresses to prevent these addresses from being assigned
to other systems.

3 Connect your target computer Ethernet card to your LAN by using an unshielded twisted-pair
(UTP) cable.

You can directly connect your computers by using a crossover UTP cable with RJ45 connectors.
Both computers must have static IP addresses. If the development computer has a second
network adapter card, that card can have a DHCP address.

Configure Ethernet Address

To build and download a real-time application by using the installed Ethernet card, first specify the
environment properties for the development and target computers. Before you start, ask your system
administrator for the following information for your target computer IP address and Subnet mask
address. This procedure sets up Ethernet protocol for the default target computer TargetPC1:

1 Open Simulink Real-Time Explorer. In the Simulink Editor, on the Real-Time tab, click Prepare >
SLRT Explorer. Or, in the MATLAB Command Window, type slrtExplorer.

2 In the Simulink Real-Time Explorer Targets Tree panel, select target computer TargetPC1.
3 On the Target Configuration tab, click the Change IP Address button.

6-3

https://www.speedgoat.com

6 RealTime Application Environment

Change
P Address

4 Configure the New IP Address and New Netmask fields in the Configure Target Computer IP
Address dialog box. Click OK.

5 Click the Disconnected label, toggling it to Connected.

Related Ethernet Configuration Topics

You can also configure the target computer Ethernet protocol by using MATLAB commands. For more
information, see the Targets object functions and examples.

See Also
Simulink Real-Time Explorer | slLrtExplorer

More About

. “Target Computer Settings”

. “Enable Development Computer Communication (Windows)”
. “Enable Development Computer Communication (Linux)”

6-4

Target Computer Update, Reboot, and Startup Application

Target Computer Update, Reboot, and Startup Application

With Simulink Real-Time Explorer, you can update the target computer RTOS software, reboot the
target computer, and configure a startup application that runs each time you start the target
computer.

Update Software

To update the target computer software:

Open Simulink Real-Time Explorer.
In the Targets Tree panel, select target computer TargetPC1.
To update the target computer RTOS software, click the Update Software button.

A W N R

Click the Disconnected label, toggling it to Connected.

Reboot Target Computer

To reboot the target computer:

Open Simulink Real-Time Explorer.
In the Targets Tree panel, select target computer TargetPC1.
To reboot the target computer, click the Reboot button.

A W N R

Click the Disconnected label, toggling it to Connected.

Select Startup Application

To configure a startup real-time application:

Open Simulink Real-Time Explorer.
In the Targets Tree panel, select target computer TargetPC1.
To load a real-time application on the target computer, click the Load Application button.

A W N -

After you load the application, select the application from the Applications on target
computer list and select the Startup App check.box. The next time the target computer starts
or reboots, the application runs on startup.

See Also
update | reboot | setStartupApp

Signals and Parameters

Important prototyping tasks include:

* Changing parameters in your real-time application while it is running

* Viewing the resulting signal data

* Checking the results

The Simulink Real-Time software includes command-line and graphical user interfaces to complete
these tasks.

» “Signal Monitoring Basics” on page 7-3

* “Monitor Signals by Using Simulink Real-Time Explorer” on page 7-4

* “Instrument a Stateflow Subsystem” on page 7-6

* “Animate Stateflow Charts with Simulink External Mode” on page 7-8

» “Signal Tracing Basics” on page 7-9

+ “Export and Import Signals in Instrument by Using Simulink Real-Time Explorer” on page 7-10
* “Trace Signals by Using Simulink External Mode” on page 7-12

» “Data Logging with Simulation Data Inspector (SDI)” on page 7-15

» “Parameter Tuning and Data Logging” on page 7-19

» “Trace or Log Data with the Simulation Data Inspector” on page 7-22

+ “External Mode Usage” on page 7-26

» “Signal Logging and Streaming Basics” on page 7-27

* “Tune Parameters by Using Simulink Real-Time Explorer” on page 7-31

* “Tune Parameters by Using MATLAB Language” on page 7-34

* “Tune Parameters by Using Simulink External Mode” on page 7-36

* “Save and Reload Parameters by Using Simulink Real-Time Explorer” on page 7-38
* “Save and Reload Parameters by Using the MATLAB Language” on page 7-40

* “Tunable Block Parameters and Tunable Global Parameters” on page 7-44

* “Tune Inlined Parameters by Using Simulink Real-Time Explorer” on page 7-47

* “Tune Inlined Parameters by Using MATLAB Language” on page 7-51

* “Tune Parameter Structures by Using Simulink Real-Time Explorer” on page 7-52
* “Tune Parameter Structures by Using MATLAB Language” on page 7-55

* “Define and Update Inport Data” on page 7-58

* “Define and Update Inport Data by Using MATLAB Language” on page 7-63

+ “Stimulate Root Inport by Using MATLAB Language” on page 7-66

* “Inport Data Mapping Limitations” on page 7-68

» “Display and Filter Hierarchical Signals and Parameters” on page 7-69

* “Troubleshoot Signals Not Accessible by Name” on page 7-73

7 Signals and Parameters

* “Troubleshoot Parameters Not Accessible by Name” on page 7-75
* “Troubleshoot Instance-Specific Parameters Not Saved” on page 7-76
* “Internationalization Issues” on page 7-77

7-2

Signal Monitoring Basics

Signal Monitoring Basics

Signal monitoring acquires real-time signal data without time information during real-time
application execution. There is a minimal additional load on the real-time tasks.

You can monitor signals by using:

* Simulink Real-Time Explorer and the Simulation Data Inspector
* MATLAB language and the Instrument object
* Simulink external mode and a Scope block

For more information, see Simulation Data Inspector and “How Application is Run Affects Signals
Logged” on page 7-27.

See Also
Instrument | Scope

More About
. “Display and Filter Hierarchical Signals and Parameters” on page 7-69
. “View Data in the Simulation Data Inspector”

. “Troubleshoot Signals Not Accessible by Name” on page 7-73

7 Signals and Parameters

Monitor Signals by Using Simulink Real-Time Explorer

This procedure uses the model slrt ex osc and shows how to instrument signals in Simulink Real-
Time Explorer to monitor streaming signal data.

10

11

12

13

14

15

16

Open model slrt_ex osc. In the MATLAB command window, type slrt_ex_osc.

Connect to a target computer. On the Simulink Editor Real-Time tab, select a target computer
and toggle the Disconnected indicator to Connected.

Build the real-time application for the target computer. Click Run on Target > Build
Application.

Open Simulink Real-Time Explorer. Click Prepare > SLRT Explorer.

Click Load Application. Select the slrt ex osc application from the Applications on target
computer list and click Load.

To view the logged signals —which are processed by the File Log block in the real-time
application— and the streamed signals —which are streamed by the instrument in the real-time
application— in the Simulation Data Inspector, click Data Inspector.

Set the real-time application Stop time to inf.
To start the real-time application, click Start.
To stop execution, click Stop.

Observe that the Simulation Data Inspector is updated with signal data from the File Log block
after the application stops.

To select a signal to stream in the real-time application, choose the SigGen signal from the

Signals available on target computer list , and then click Add to signals in instrument .
Click Add Instrument.

Click Start and observe that the signal data appears in the Simulation Data Inspector as the
application runs.

While the real-time application is running, add another signal to stream. Choose the XfrFnc
signal from the Signals available on target computer list , and then click Add to signals in

instrument *-. To update the instrument, click Configure Instrument.

Observe that the added signal data appears in the Simulation Data Inspector as the application
runs, starting at the time you updated the instrument.

You can click Remove Instrument to stop streaming signal data without stopping the real-time
application.

To stop execution, click Stop.

See Also

Related Examples

“Data Logging with Simulation Data Inspector (SDI)” on page 7-15

More About

“Export and Import Signals in Instrument by Using Simulink Real-Time Explorer” on page 7-10
“Display and Filter Hierarchical Signals and Parameters” on page 7-69

Monitor Signals by Using Simulink Real-Time Explorer

“Troubleshoot Signals Not Accessible by Name” on page 7-73

7-5

7 Signals and Parameters

Instrument a Stateflow Subsystem

A Simulink Real-Time model that uses Stateflow blocks can provide visual confirmation that your

chart behaves as expected when you simulate the model or run the real-time application.

1 This procedure uses the model slrt_ex sf car. To open the model and its related MAT file, in

the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt _ex sf car'))

load(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt_ex user_inputs.mat'),'-mat')

2 To make Stateflow states available in the Simulation Data Inspector, select them and mark them

for Log Self Activity.
3 Opentheslrt ex sf car model.
Double-click the shift logic chart.

" . Stateflow (chart) sirt_ex_sf_car/shift_logic ™ - Simulink prerelease use

SIMULATION DEBUG MODELING FORMAT REAL-TIME STATE

Exclusive (OR)
0 & 3| ® %
i Parallel (AND] -

Group Subchart Atomic SentenEEET Comment Add o S L°9_5_E|f TE_St Data

Selection Selection Subchart Out Breakpoint | Execution Orde = Activity Faint Inspector
COMPONENT DEBUG DECOMPOSITION MONITOR ACTIVITY RESULTS

LS| ‘L transmission ratio ¢ shift_logic X sirtex_sf car

® |[Pajsrt_ex_st car » T3 shift_logic

o 0 B ®

FEREDOEASE QO

uP -
| third z
2 entry: gear = 3; L

UP
DOWN DOWN

[speed = up_th]

|—

—
—
—_

aftar(TWAIT tick) after(TWAIT tick)

[speed <= down_th] [speed >= up_th]
{gear_state. DOWN} {gear_state UP}
125% odes

5 Inthe gear_state chart, select the first state

Instrument a Stateflow Subsystem

Click the Log Self Activity button and the Test Point button.
Repeat listitems 3-4 for gear_state values second, third, and fourth.

Build and download the real-time application to the target computer. On the Real-Time tab, click
Run on Target.

9 Monitor Stateflow states by using the Simulation Data Inspector. For more information, see
“View Data in the Simulation Data Inspector” and “View State Activity by Using the Simulation
Data Inspector” (Stateflow).

See Also

More About

. “View Data in the Simulation Data Inspector”
. “View State Activity by Using the Simulation Data Inspector” (Stateflow)
. “Animate Stateflow Charts with Simulink External Mode” on page 7-8

7-7

7 Signals and Parameters

Animate Stateflow Charts with Simulink External Mode

The Simulink Real-Time software supports the animation of Stateflow charts in your model to provide
visual confirmation that your chart behaves as expected. You must be familiar with the use of
Stateflow animation. For more information on Stateflow animation, see “Animate Stateflow Charts”
(Stateflow).

1

You must have already configure the Stateflow states for animation in the model. If you have not,
see “Animate Stateflow Charts” (Stateflow). This example uses model slrt_ex sf car. To open
the model and load its related MAT file, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt _ex sf car'))
load(fullfile(matlabroot, 'toolbox', 'slrealtime’,
‘examples', 'slrt _ex user _inputs.mat'),'-mat')
2 Open the external mode control panel. In the Simulink Editor, in the Real-Time tab, click
Prepare > Control Panel.
3 Select Signal & Triggering.
In the Trigger section of the External Signal & Triggering window:
a To direct the trigger to re-arm after the trigger event completes, set Mode to normal.
To select the number of base rate listitems for which external mode uploads data after a
trigger event, in the Duration box, enter 5.
¢ To direct data upload to begin immediately after the trigger event, select the Arm when
connecting to target check box.
5 Click Apply. For more information about signal and triggering options, see “Configure Host
Monitoring of Target Application Signal Data”.
6 Connect to the target computer. On the Real-Time tab, toggle the Disconnected indicator to
Connected.
7 Build and download the model to the target computer. On the Real-Time tab, click Run on
Target.
8 The simulation begins to run. You can observe the animation by opening the Stateflow Editor for
your model.
9 To stop the simulation, on the Real-Time tab, click Stop.
See Also
More About

“Animate Stateflow Charts” (Stateflow)
“Configure Host Monitoring of Target Application Signal Data”
“Simulink External Mode Interface”

Signal Tracing Basics

Signal Tracing Basics

Signal tracing acquires signal and time data from a real-time application. While the real-time
application is running, you can visualize the data on the target computer by using the Simulation
Data Inspector. You can upload the data from a File Log block to the development computer and
display it using the Simulation Data Inspector.

You trace signals by marking the signals for logging or connecting the signals to File Log blocks. View
the signals by using Simulink Real-Time Explorer, Simulink external mode, and the Simulation Data
Inspector. For more information, see Simulation Data Inspector and “How Application is Run
Affects Signals Logged” on page 7-27.

See Also

More About

. “Display and Filter Hierarchical Signals and Parameters” on page 7-69
. “View Data in the Simulation Data Inspector”

. “Troubleshoot Signals Not Accessible by Name” on page 7-73

7 Signals and Parameters

Export and Import Signals in Instrument by Using Simulink
Real-Time Explorer

7-10

When testing a complex model with many signals, you frequently must select signals for tracing or
monitoring from multiple parts and levels of the model hierarchy.

Save Signals to Disk

You can make this task easier by using Simulink Real-Time Explorer to select the signals in
instrument and save the list of signals to disk.
Open model slrt_ex osc.

2 Build the real-time application for the target computer. In the Simulink Editor Real-Time tab,
click Run on Target > Build Application.

3 Open Simulink Real-Time Explorer. Click Prepare > SLRT Explorer.

Connect to the target computer and load the real-time application. In Simulink Real-Time
Explorer, click Load Application. Select the slrt_ex osc application from the Applications
on target computer list and click Load.

5 To add signals to the signals in instrument, export the list of signals, and import the list of
signals, click the Signals tab..

Select the signals to monitor from the list and then click Add to signals in instrument .

To export the list, click Export instrument to file df") Name the files and click Save.
8 To remove signals from the signals in the instrument, select the signals in the list, and then click
Remove signals from instrument .

To import the list, click Import instrument from file Z, Select the file and click Open.

Get MATLAB Code for Signals

When developing an App Designer application or an m-script that connects to a real-time application,
it is helpful to have MATLAB code for the signals in the instrument. This code provides access to
signals in an Instrument object (or instrumented signals), which are signals that are configured for
streaming signal data from a real-time application. To generate this code from the Signals in
Instrument:

1 In Simulink Real-Time Explorer, click Load Application. Select the slrt ex osc application
from the Applications on target computer list and click Load.

Click the Signals tab.

Select the signals to monitor from the list, and then click Add to signals in instrument <

4 To create MATLAB code for the signals in the instrument, click Generate MATLAB code to
create Instrument programmatically [#1. An editor window opens in MATLAB and displays
the code for the signals in the Instrument.

See Also
Instrument | addSignal | connectLine | connectScalar | validate

Export and Import Signals in Instrument by Using Simulink Real-Time Explorer

More About

. “Monitor Signals by Using Simulink Real-Time Explorer” on page 7-4
. “Display and Filter Hierarchical Signals and Parameters” on page 7-69

7-11

7 Signals and Parameters

Trace Signals by Using Simulink External Mode

7-12

You can use Simulink external mode to establish a communication channel between your Simulink
block diagram and your real-time application. The block diagram becomes a user interface to your
real-time application. Simulink scopes can display signal data from the real-time application,
including from models referenced inside a top model. You can control which signals to upload through
the External Signal & Triggering dialog box. See “Select Signals to Upload” and “TCP/IP or Serial
External Mode Control Panel”.

If using external mode simulation with the model serving as the interface to the real-time application
and the model contains referenced models, use the Simulation Data Inspector to log signal data. Do
not use Floating Scope or Scope Viewer blocks to display signals in the referenced models for
external mode simulation.

Note Do not use Simulink external mode while Simulink Real-Time Explorer is running. Use only one
interface to control the real-time application.

Set Up for External Mode Simulation

This procedure uses model slrt_ex osc. This model contains a Simulink Scope block. To set up
triggering for the external mode simulation:

Open model slrt _ex osc.

N =

Open the external mode control panel. In the Simulink Editor, on the Real-Time tab, click
Prepare > Control Panel.

In the external mode control panel, click Signal & Triggering.

In the External Signal & Triggering dialog box, set the Source parameter to manual.
Set the Mode parameter to normal. In this mode, the scope acquires data continuously.
Select the Arm when connecting to target check box.

In the Delay box, enter 0.

0 N OO U AW

In the Duration box, enter the number of samples for which external mode is to log data, for
example, 1000. The External Signal & Triggering dialog box looks like this figure.

Trace Signals by Using Simulink External Mode

sirt_ex_osc: External Signal & Triggering

Signal selection
Trigger Selected Block Path Select all
X Scopel slrt_ex_osc/Scopel
Clear all
on
off
Trigger Signal
Go To Block
Trigger options
Source: | manual - | Mode: normal ~ | Duration: | 1000 | Delay: |0
Arm when connecting to target
Trigger signal
Path: Port: |1 Element: any
Direction: rising ~ Level: D Hold-off: 0
Cancel Help Apply

9 Click Apply, and then Cleose. In the External Mode Control Panel dialog box, click OK.

Set Stop Time and Simulate

To set the stop time and run the simulation:

In the Simulink toolbar, increase the simulation stop time to, for example, 50.
Save the model as ex_slrt ext osc. On the Simulation tab, from Save, click Save As.
If a scope window is not displayed for the Scope block, double-click the Scope block.

A W N -

Connect to the target computer. On the Real-Time tab, toggle the Disconnected indicator to
Connected.

5 Build and download the real-time application to the target computer. Click Run on Target.

The real-time application begins running on the target computer. The Scope window displays
plotted data.

7-13

7 Signals and Parameters

Scopel

File Tools View Simulation Help
@- 0P ® - Q-L-F&-

P Chut

Ready Sample based |Offzet=0.8 (T=1.000

6 To stop the simulation, on the Real-Time tab click Stop.

7-14

Data Logging with Simulation Data Inspector (SDI)

Data Logging with Simulation Data Inspector (SDI)

This example shows how to use a Simulink® Real-Time™ log of signal data and the Simulation Data
Inspector. Signals are logged during model execution. At the end of the run, the Simulation Data
Inspector interface displays the signal. This example show how to get the signals from the Simulation
Data Inspector interface by using the command line.

Open, Build, and Download Model

Open the model slrt_ex soc_dist. This model calibrates the control efforts through social
distancing on an infectious disease outbreak.

Open the model.

model = 'slrt ex soc dist';
md1l0pen = 0;
systems = find system('type', 'block diagram');
if all(~strcmp(model, systems))
mdlOpen = 1;
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’', 'examples', 'slrt ex soc dist.slx'));
end

7-15

7 Signals and Parameters

h

Im dimiR

[

!
v zinfecPous & minor symptoms
N KTs
W TE [5 | E T > d >
» — B | dlaR I{ = z-1 recovers
z-linfgctious § asymbgmatic | T
T r
‘ L1yl L5
!
diplm . | < T | ¥l
| : 5
Ip digls | _ Tl BClpuE & ?E—sg_'ripnomat-: | ip dSE -1 KTs
> » —
‘ | | Is z-1
| Im
dEla
E =
uElp—1J | | . - > > K—Tf
T T — > z-
I T I T
| KTs
B! P
‘ T| z-1 | fataities E.
dHD .l
T |
—H [>
dHR +
‘ \—’ +
. . I disH . e
infactious & sevEre symptpngs
o 15 L
z-1
K Ts hospitalized
|

suscephbla

exposad

7-16

Model slrt_ex_soc_dist
Simulink Real-Time example model

Caopyright 2020 The MathWorks, Inc.

Build the model and download to the target computer:

* Configure for a non-Verbose build.

* Build and download application.

set param(model, 'RTWVerbose', 'off"');

evalc('slbuild(model)"');
* Close the model it is open.
if (mdl0pen)

bdclose(model);
end

Data Logging with Simulation Data Inspector (SDI)

Run Model to Evaluate Effects of No Social Distancing During Outbreak

Using the Simulink Real-Time object variable, tg, load and start the model, and modify model
parameters.

tg = slrealtime;
load(tg,model);

setparam(tg,'', 'soc dist level',1);

setparam(tg,'"', 'thresh int level',1);

start(tg);

while ~strcmp(tg.status, 'stopped')
pause(5);

end

stop(tg);

Update Parameters and Re-evaluate Effect of Social Distancing During Outbreak

Using the Simulink Real-Time object variable, tg, load and start the model, and modify model
parameters

tg = slrealtime;
load(tg,model);

setparam(tg,'', 'soc dist level',0.2);

setparam(tg,'', 'thresh int level',0.2);

start(tg);

while ~strcmp(tg.status, 'stopped')
pause(5);

end

stop(tg);

Display Signals in Simulation Data Inspector

To view the plotted signal data, open the Simulation Data Inspector.
Simulink.sdi.view

Retrieve and Plot Signal Data from Simulation Data Inspector

You can also retrieve the signal data from the SDI and plot the data by using these commands.

* Get all the runs

* Get the run information

* Get the signal.

* Get the signal objects.

» Take only infectious group values.
* Plot the signals.

The result shows that social distancing can reduce the number of hospitalized people

runIds = Simulink.sdi.getAll1RunIDs();

for i = 1:1length(runlds)
run = Simulink.sdi.getRun(runIds(i));
signalID = run.getSignalIDsByName('hospitalized');
if ~isempty(signallD)
signalObj = Simulink.sdi.getSignal(signallD);

7-17

7 Signals and Parameters

signalArray(:,1) = signalObj.Values(:,1).Data;
timeValues = 100*(signalObj.Values(:,1).Time);
plot(timeValues,signalArray);
drawnow;
end
end

grid on;
xlabel('Time in days'); ylabel('hospitalized people');

18000 T T

16000

14000

12000

10000

|
8000 f \

hospitalized people

=2}
2
2
=]
T

4000 | | '

2000 J !

LN |

0 50 100 150 200 250 300 350 400 450
Time in days

500

See Also
slrtTETMonitor | SLRT Overload Options

More About

“Trace or Log Data with the Simulation Data Inspector” on page 7-22
. Simulation Data Inspector

7-18

Parameter Tuning and Data Logging

Parameter Tuning and Data Logging

This example shows how to use real-time parameter tuning and data logging with Simulink® Real-
Time™. After the example builds the model and downloads the real-time application,

slrt _ex param_tuning, to the target computer, the example executes multiple runs with the gain
'Gain1/Gain' changed (tuned) before each run. The gain sweeps from 0.1 to 0.7 in steps of 0.05.

The example uses the data logging capabilities of Simulink Real-Time to capture signals of interest
during each run. The logged signals are uploaded to the development computer and plotted. A 3-D
plot of the oscillator output versus time versus gain is displayed.

Open, Build, and Download Model to the Target Computer

Open the model, slrt_ex_param_tuning. The model configuration parameters select the
slrealtime.tlc system target file as the code generation target. Building the model creates a real-
time application, slrt_ex param tuning.mldatx, that runs on the target computer.

model = 'slrt ex param tuning';
open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’', 'examples',model));

onooo »

’)
» File Log

Simulink Real-Time example model

7
Copyright 2020 The MathWorks, Inc.

Build the model and download the real-time application, slrt_ex param_tuning.mldatx, to the
target computer.

* Configure for a non-Verbose build.

* Build and download application.

set param(model, 'RTWVerbose', 'off");
set param(model, 'StopTime','0.2");
evalc('slbuild(model)"');

tg = slrealtime;
load(tg,model);

Run Model, Sweep 'Gain' Parameter, Plot Logged Data

This code accomplishes several tasks.

7-19

7 Signals and Parameters

Task 1: Create Target Object

Create the MATLAB® variable, tg, that contains the Simulink Real-Time target object. This object
lets you communicate with and control the target computer.

* Create a Simulink Real-Time target object.

* Set stop time to 0.2s.

Task 2: Run the Model and Plot Results

Run the model, sweeping through and changing the gain (damping parameter) before each run. Plot
the results for each run.

* Ifno plot figure exist, create the figure.

» If the plot figure exist, make it the current figure.

Task 3: Loop over damping factor z

* Set damping factor (Gainl/Gain).

» Start run of the real-time application.

* Store output data in outp, y, and t variables.
* Plot data for current run.

Task 4: Create 3-D Plot (Oscillator Output vs. Time vs. Gain)

* Loop over damping factor.

* Create a plot of oscillator output versus time versus gain.
* Create 3-D plot.

figh = findobj('Name', 'parsweepdemo');

if isempty(figh)
figh = figure;

set(figh, 'Name', 'parsweepdemo', 'NumberTitle', 'off');
else

figure(figh);
end

y = [1; flag = o;
for z=0.1: 0.05 : 0.7
if isempty(find(get(0, 'Children') == figh, 1))
flag = 1;
break;
end
load(tg,model);
tg.setparam([model '/Gainl'],'Gain',2 * 1000 * z);
tg.start('AutoImportFileLog',true, 'ExportToBaseWorkspace', true);
pause(0.4);
outp logsOut{1}.Values;

y [y,outp.Data(:,1)];
t outp.Time;
plot(t,y);
set(gca, 'XLim', [t(1), t(end)], 'YLim', [-10, 10]);
title(['parsweepdemo: Damping Gain = ', num2str(z)]);
xlabel('Time"); ylabel('Output');
drawnow;
end

7-20

Parameter Tuning and Data Logging

if ~flag
delete(gca);
surf(t(l : 200), 6.1 : 0.05 : 0.7, y(1 : 200, :)');
colormap cool
shading interp
h = light;
set(h, 'Position', [0.0125, 0.6, 10], 'Style', 'local');
lighting gouraud
title('parsweepdemo: finished');
xlabel('Time'); ylabel('Damping Gain'); zlabel('Output');
end

parsweepdemo: finished

10 ~

Output
=

0.05

0.04

0.2 0.02

0.01
Damping Gain 0 0

Time
Close Model

When done, close the model.

close_system(model,0);

See Also
slrtTETMonitor

More About

. “Trace or Log Data with the Simulation Data Inspector” on page 7-22
. Simulation Data Inspector

7-21

7 Signals and Parameters

Trace or Log Data with the Simulation Data Inspector

7-22

With the Simulation Data Inspector and Simulink Real-Time, you can trace signal data by streaming
signal data directly to the Simulation Data Inspector or by logging signal data by recording it through
a File Log block. If streaming signal data directly, you view the output in real time as the application
produces it.

The application can produce more data than the target computer can transmit in real time to the
development computer. Data accumulates in the network buffer, and, if the buffer fills up, the RTOS
drops data points. Streaming signal data directly does not support decimation or limit data points.

To avoid dropped data points caused by network buffer overruns, you can use logging through a File
Log block. When logging, you connect signals to File Log blocks in the model. In the real-time
application, these blocks store data for the buffered signals on the target computer. At the end of
execution, the real-time application transmits the data to the development computer for display in the
Simulation Data Inspector. You can then view the most important signals immediately and view the
buffered signals afterward.

Logging signal data through a File Log block supports decimation or limit data points and supports
conditional block execution semantics. Some examples are logging signal data by enabling data
logging for a signal inside a for-iterator, function-call, or enabled/triggered subsystem. For more
information, see Simulation Data Inspectorand “How Application is Run Affects Signals Logged”
on page 7-27.

Set Up Model for Logging

To set up the model for logging signal data:

1 Openslrt ex osc.

2 Select the MuxOut output signal, place your cursor over the signal, and select Enable Data
Logging.

Tip Consider whether to configure the Logging sample time in the Instrumentation
Properties for the logged signal. Use this property to set a lower sample time for signals that go
into the Simulation Data Inspector while the simulation is running. Configuring this property can
help makes the Simulation Data Inspector more responsive and easier to use.

3 Double-click the File Log block. The Decimation value is 1.

Set Up Simulation Data Inspector

To set up the Simulation Data Inspector:

1 e
Open the Simulation Data Inspector (ﬂ).

Click Layout (mm),

3 Select two horizontal displays.

Trace or Log Data with the Simulation Data Inspector

View Simulation Data

To view the simulation data:

Build and download slrt _ex osc.
Start real-time execution.

L7
When the Simulation Data Inspector button glows = , click the top display and select the Sum
output signal.

4 Click in the bottom display and select the Mux output signals.

Simulation Data Inspector - untitled™

a
4

@ &P »

Q 4 < O|mE(E-a-EOh]|.” | O8
Inspect Compare B MuxOut(1)
Filter Signals
NAME LINE 0

+ Run 2: sIrt_ex_osc @ TargetPCA[FileLog] [... || ~%']

- HH MuxQut

N MuxOut(1) —
0
O — |
.01
-o.on
0 o2 04 08 0E 10 12 14 18 18 z0 22 24 26 28 adg
B MuxOut(2)
I I AT T T T e e e T v e e ey e v e v e ey v e e e vy vy e v
05
0
05
Archive (1) LI S I AT R R A AT
Properties -~ 0 02 04 08 08 10 12 14 16 18 20 22 24 28 28 a0

5 Stop real-time execution.

KA
When the Sum output appears, click Fit to View (« »).

7-23

7 Signals and Parameters

Simulation Data Inspector - untitled™

< 1]
Q 1 ® | s O C [¢
Inspect Compare B MuxOut(1)
Filter Signals
@ NAME LN 001
~ Run 2: sirt_ex_osc @ TargetPC1[FileLog] [...
- - MuxOut
MuxOut(1) —
04
o O —
‘ 0.01
- 0.02
8.0 81 2 83 &4 &5 65 &7 s 80 7.0
* B MuxOut(2)
1.0 = == = === =TT 11— == =1 — =T}
0.5
0
-05
Archive (1) S IRl N N I I N N A O B B
Properties ~ 6.0 6.1 8.2 5.3 6.4 55 6.6 6.7 5.8 5.0 7

To zoom in on a time segment of interest, for example, 10.0-10.1 s, click Zoom in Time (.i') and
use the mouse and mouse wheel.

7-24

Trace or Log Data with the Simulation Data Inspector

/) Simulation Data Inspector - untitled™

< _ am
Q 4 > | mm T H I O JiE «
Inspect Compare B MuxOut(1)
Filter Signals
@ e E 0.01 4
~ Run 2: sirt_ex_osc @ TargetPC1[FileLog] [...
- - MuxOut
MuxOut(1) —
0
o D ———
* 001 h
- 002]
00 .01 6.02 6.03 5.04 505 508 .07 6.08 6.00 8.10
¢ B MuxOut(2)
10
054
0
051
Archive (1) ~ an
Properties ~ 500 601 6.02 6.03 6.04 5.05 5.08 607 6.08 6.00 a.10

7 To save the Simulation Data Inspector session as an MLDATX file, click Save.

See Also

More About

. “Data Logging with Simulation Data Inspector (SDI)” on page 7-15
. Simulation Data Inspector

7-25

7 Signals and Parameters

External Mode Usage

7-26

When setting up signal triggering (Source set to signal), explicitly specify the element number of the
signal in the Trigger signal:Element box. If the signal is a scalar, enter a value of 1. If the signal is a
wide signal, enter a value from 1 to 10. When uploading Simulink Real-Time signals to Simulink
scopes, do not enter Last or Any in this box.

The Direction:Holdoff value does not affect the Simulink Real-Time signal uploading feature.

See Also

More About

. “Trace Signals by Using Simulink External Mode” on page 7-12
. “Trace or Log Data with the Simulation Data Inspector” on page 7-22
. “Simulink External Mode Interface”

Signal Logging and Streaming Basics

Signal Logging and Streaming Basics

Signal logging acquires signal data during a real-time run and stores it on the target computer. After
you stop the real-time application, you transfer the data from the target computer to the development
computer for analysis. You can plot and analyze the data, and later save it to a disk on the
development computer.

Simulink Real-Time signal logging samples at the base sample time. You can log signals to the
Simulation Data Inspector by:

* Mark signals for immediate logging to the Simulation Data Inspector.

» Connect signals to File Log blocks for buffered logging to the Simulation Data Inspector.

With regards to logging:

* Simulink Real-Time Explorer works with multidimensional signals in column-major format.
* Some signals are not observable.

Like signal logging, signal streaming also acquires signal data during a real-time run on the target
computer. But, unlike signal logging that uses a File Log block or signals marked for logging, signal
streaming uses an instrument that you add to the real-time application. You add signals to the
instrument by using the Real-Time tab in the Simulink Editor or by selecting signals for streaming in
the Simulink Real-Time Explorer. The streaming signal data transfers from the target computer to the
development computer while the real-time application is running.

How Application is Run Affects Signals Logged

The Run on Target button provides slightly different data logging support than running the real-time
application by using the start(tg) command:

* When you run the real-time application by using the start(tg) command, only signals marked
for data logging or connected to a File Log block are logged to the Simulation Data Inspector.

* When you run the real-time application by using the Run on Target button on the real-time tab in
the Simulink Editor or the Start button in the Simulink Real-Time Explorer, signals marked for
logging, signals connected to File Log blocks, and signals connected to Scope blocks are logged to
the Simulation Data Inspector.

File Logging and Streaming Workflow

You can get signal data into the Simulation Data Inspector through logging by using a File Log block
or through streaming by marking a signal for logging in the model or selecting a signal for streaming
in the Simulink Real-Time Explorer.

Signal logging through a File Log block provides options that let you control:

* The number of file logs that are retained on the target computer
* Whether file log data is auto imported into the Simulation Data Inspector
* Whether file log data is exported into the base workspace

You can configure these options by using the option for the real-time application start(tg) function
or by using the Run in Real-Time selection in the Simulink Real-Time Explorer or the Simulink

7-27

7 Signals and Parameters

Editor. The File Logging and Streaming Workflow figure shows how these options configure
operation of the real-time application start(tg) function. Where startRecording and
stopRecording appear in the figure, you can use either these functions or the corresponding Start

Recording and Stop Recording buttons on the Real-Time tab in the Simulink Editor or in the
Simulink Real-Time Explorer.

7-28

Signal Logging and Streaming Basics

StopTime

FileLogMaxRuns
AutolmportFileLog

——— ExportToBaseWorkspace

Default
start(tg) File Logging
Enable File Log (disable) stopRecording(tg)
Real-Time Enable File Log (enable) startRecording(tg)
application . .
running File L(&)(gglng
Qenerates S;’f:g?égg File Logging
signal data File Logging &
enabled Streaming
enabled
v v Enable File Log (disable) stopRecording(tg)

stop(tg) or StopTime

Autolmport
FileLog

import(tg.FileLog,'app')

.

Auto import of
FileLog occurs

File Logging and Streaming Workflow

While the real-time application is running, you can control file logging from File Log blocks:

7 Signals and Parameters

7-30

* Default logging logs signal data for the entire simulation run.

* Enable or disable file logging by using the Enable File Log block in the model. If the model
includes an Enable File Log, the startRecording function and stopRecording function control
only streaming, not logging.

* Enable or disable file logging by using the startRecording function or stopRecording
function. These function also enable or disable streaming. Alternatively, you can use the Start
Recording button and Stop Recording button on the Real-Time tab in the Simulink Editor or in
the Simulink Real-Time Explorer.

After file logging stops, which occurs:
* By using the stop(tg) function

* By StopTime expiring
* By using the stopRecording(tg) function or Stop Recording button

The configuration of the AutoImportFilelLog option selects whether file log data is auto imported
into the Simulation Data Inspector or whether you use the import(tg.FilelLog) function to import
the data.

Auto import of the file log is handled differently by the workflows in the File Logging and
Streaming Workflow figure:

» For all the workflows, the auto import operation occurs when the real-time application stops.

* For the recording workflow, the auto import operation also occurs when the stopRecording
function is called.

See Also
File Log | Enable File Log | import | start | stop | startRecording | stopRecording

Related Examples
. “Data Logging with Simulation Data Inspector (SDI)” on page 7-15

More About

. “Troubleshoot Signals Not Accessible by Name” on page 7-73
. “Display and Filter Hierarchical Signals and Parameters” on page 7-69

Tune Parameters by Using Simulink Real-Time Explorer

Tune Parameters by Using Simulink Real-Time Explorer

You can use Simulink Real-Time Explorer to change parameters in your real-time application while it
is running or between runs. You do not need to rebuild the Simulink model, set the Simulink interface
to external mode, or connect the Simulink interface with the real-time application.

This procedure uses the model slrt_ex osc.

Set Up the Simulation Data Inspector

Before tuning parameter values, set up the Simulation Data Inspector:

1

10

Open the Simulation Data Inspector (m).

Click Layout (=),
Select two horizontal displays.

Open model slrt _ex osc. Set property Stop time to inf. In the Simulink Editor, on the Real-
Time tab, select Run on Target > Stop Time and set Stop Time to inf.

Connect to the target computer. Toggle the Disconnected indicator to Connected.

Build the real-time application for the target computer. Click Run on Target > Build
Application.

Deploy the real-time application to the target computer. Click Run on Target > Deploy to
Target.

Connect to the target computer and run the real-time application. In the MATLAB Command
Window, type:

tg = slrealtime;

start(tg);

Open the Simulation Data Inspector. In the MATLAB Command Window, type:

Simulink.sdi.view

In the Simulation Data Inspector, drag the MuxOut(1) signal to the top display and drag the
MuxOut(2) signal to the bottom display.

7-31

7 Signals and Parameters

7-32

/' Simulation Data Inspector - untitled™

Q ~ L3
Inspect Compare B MuxQut(1)
: Filter Signals
Run 3: sirt_ex_osc @ TargetPC1 [Current] 0.005 4
. + [MuxOut
v MuxOut(1) — g
MuxOut(2) E—
E 0.005 |
3 -0.010
-0.015 |
-0.020
i -0.025 |
7.0 71 7.4 75 76 77 78 78 a0
n B MuxOut(2)
10
05
04
-0.5 4
Archive (2) 10
Praperties 7.0 71 74 75 78 77 7E 78 20

View Initial Parameter Values

To view the initial parameter values:

1 Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT Explorer.
2 Select the Parameters tab. The tab lists parameters Amplitude, Frequency, A, and C with

their values.

Modify Parameter Values

To update a parameter value:

1 Select the parameter value for the Amplitude parameter and change the value to 0.5.
2 Select the parameter value for the Frequency parameter and change the value to 15.

Tune Parameters by Using Simulink Real-Time Explorer

3 After each change, the signal display in the Simulation Data Inspector alters to match the effect
of the parameter change. You can change multiple parameters at the same time by using The
Hold Updates button. For more information, see “Tune Parameters by Using Hold Updates and
Update All Parameters” on page 7-36.

See Also

More About

“Simulink Real-Time Operation Modes”

“Display and Filter Hierarchical Signals and Parameters” on page 7-69

“Tune Parameters by Using Hold Updates and Update All Parameters” on page 7-36
“Troubleshoot Parameters Not Accessible by Name” on page 7-75

“Save and Reload Parameters by Using Simulink Real-Time Explorer” on page 7-38
“Save and Reload Parameters by Using the MATLAB Language” on page 7-40

7-33

7 Signals and Parameters

Tune Parameters by Using MATLAB Language

To change block parameters, you can use the MATLAB functions. With these functions, you do not
need to set the Simulink interface to external mode or connect the Simulink interface with the real-
time application.

You can download parameters to the real-time application while it is running or between runs. You
can change parameters in your real-time application without rebuilding the Simulink model and
change them back to their original values by using Simulink Real-Time functions.

Note Simulink Real-Time does not support parameters of multiword data types.

Access Parameters by Using Application Object

This procedure uses the Simulink model slrt _ex osc. You must have already created and
downloaded the real-time application to the default target computer.

1 To create the target object and application object, in the MATLAB Command Window, type:

tg = slrealtime('TargetPCl');
app = slrealtime.Application('slrt ex osc');

2 The Parameters property of the Application object is a structure that includes a BlockPath and
BlockParameterName for each parameter. To display the parameter name of the first of
parameter in the real-time application, in the MATLAB Command Window, type:
app.Parameters(1l).BlockParameterName

3 To change the gain for the Gainl block, type:

pt = setparam(tg, 'Gainl', 'Gain', 800)

4 The setparam method returns a structure that stores the source information, the previous value,
and the new value.

When you change parameters, the changed parameters in the target object are downloaded to
the real-time application. The development computer displays this message:

pt =

Source: {'Gainl' 'Gain'}
OldValues: 400
NewValues: 800

5 The real-time application runs. The plot frame updates the signals for the active scopes.
Stop the real-time application. In the Command Window, type:

stop(tg)
7 To reset to the previous values, type:

pt = setparam(tg, pt.Source{l}, pt.Source{2}, pt.OldValues)
pt =
Source: {'Gainl' 'Gain'}

0ldValues: 800
NewValues: 400

7-34

Tune Parameters by Using MATLAB Language

See Also

More About

. “Simulink Real-Time Operation Modes”
. “Troubleshoot Parameters Not Accessible by Name” on page 7-75

7-35

7 Signals and Parameters

Tune Parameters by Using Simulink External Mode

7-36

To connect your Simulink model to your real-time application, you use Simulink external mode
simulation. The model becomes a user interface to your real-time application. Set up the Simulink
interface in external mode to establish a communication channel between your Simulink model and
your real-time application.

In Simulink external mode, when you change parameters in the Simulink model, Simulink downloads
those parameters to the real-time application while it is running. You can change parameters in your
program without rebuilding the Simulink model to create a new real-time application.

Note Simulink Real-Time does not support parameters of multiword data types.

Tune Parameters by Using Block Diagram

After you download your real-time application to the target computer, you can connect your Simulink
model to the real-time application. This procedure uses the Simulink model slrt ex osc. You must
have already built and downloaded the real-time application for that model.

Open model slrt_ex osc.

Connect to the target computer. On the Real-Time tab, toggle the Disconnected indicator to
Connected.

3 Build and download the real-time application to the target computer. Click Run on Target.

The real-time application begins running on the target computer.
From the Simulation block diagram, double-click the block labeled Gainl
5 In the Block Parameters: Gainl parameter dialog box, in the Gain text box, enter 800. Click OK.

When you change a MATLAB variable and click OK, the changed parameters in the model are
downloaded to the real-time application.

To stop the simulation, click Stop.
7 Disconnect to the target computer. Toggle the Connected indicator to Disconnected.

The Simulink model is disconnected from the real-time application. If you then change a block
parameter in the Simulink model, the real-time application does not change.

Tune Parameters by Using Hold Updates and Update All Parameters

By using the Hold Updates button, you can tune multiple parameters and apply the tuning changes
at once by using Update All Parameters, instead of tuning one parameter at a time. This example
uses model slrt_ex osc.

1 Open model slrt_ex osc. in the MATLAB Command Window, type:
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc'))

In the Simulink Editor, on the Real-Time tab, click Run on Target.

Click Prepare > Hold Updates. The editor holds parameter updates until you click Hold
Updates again.

Tune Parameters by Using Simulink External Mode

To set parameter values, you can set values either by clicking each block or by using the Model
Data Editor in the base workspace.

On the Real-Time tab, click Prepare > Signal Table.

5 Inthe Model Data Editor, click the Parameters tab. Modify parameters values in the Model Data
Editor in the base workspace.

Click Prepare > Update All Parameters.
To stop the simulation before it ends, click Stop.

See Also

More About

. “Simulink Real-Time Operation Modes”
. “Troubleshoot Parameters Not Accessible by Name” on page 7-75

7-37

7 Signals and Parameters

Save and Reload Parameters by Using Simulink Real-Time

Explorer

7-38

After you load a real-time application with parameter values, you can use Simulink Real-Time
Explorer to save those values to a parameter set file on the target computer or the development
computer. You can then reload these parameter values from the file to the same real-time application.
To ease the process of tuning parameters, use the explorer parameter set workflow. For more

information, see Simulink Real-Time Explorer.

p
Load real-time
applicaton

\ 4

Real-time
simulation

Load parameter set
file by using
slrtExplorer

Y

Explore parameters
in slrtExplorer
Parameters tab

Edit
parameters?

Save parameter set
file by using
slrtExplorer

In Simulink Real-Time Explorer, you save or load parameters by using the Save Param Set or Load
Param Set buttons on the Parameters tab. These buttons provide similar save and restore
parameter operation as available by using the target object methods saveParamSet and

loadParamSet.

Yes

No
New

Simulation

Done tuning
parameters

Requirements in Simulink Real-Time Explorer:

Save and Reload Parameters by Using Simulink Real-Time Explorer

Connect to the target computer.
Load a real-time application on the target computer.

View the Parameters tab.

The Save Param Set and Load Param Set buttons are visible when the application has
parameters.

By using the Save Param Set or Load Param Set buttons, you can save or load the parameter set
file from the development computer or target computer. See the figure.

Development Target
Computer Computer

Real-Time
Application
ParameterSet ParameterSet
File File
= / Load o
—_— \ ParameterSet 4_ p—
ParameterSet Para mete rSet
i File
File v
— Save o
— ParameterSet ’ —

For information about other parameter set operations, see “Save and Reload Parameters by Using the
MATLAB Language” on page 7-40.

See Also
Simulink Real-Time Explorer | Application | ParameterSet | Target

More About

“Save and Reload Parameters by Using the MATLAB Language” on page 7-40
“Tune Parameters by Using Simulink Real-Time Explorer” on page 7-31
“Tune Parameters by Using MATLAB Language” on page 7-34

“Tune Parameters by Using Simulink External Mode” on page 7-36
“Troubleshoot Instance-Specific Parameters Not Saved” on page 7-76

7-39

7 Signals and Parameters

Save and Reload Parameters by Using the MATLAB Language

After you load a real-time application that has parameter values, you can save those values to a
parameter set file on the target computer. You can then later reload these parameter values to the
same real-time application. To ease the process of tuning parameters, use the ParameterSet object
workflow. For example code that demonstrates this workflow, see the ParameterSet object.

Note The parameter set file lets you preserve parameter values outside of the real-time application
and model. To apply parameter values from the parameter set file, load the parameter set into the
real-time application after you load the application. This action appears in the Edit parameters loop
of the workflow.

Load real-time
application

v (v

Export ParameterSet
Save
) data to parameter
parameter set file X
set file
Y Y
Import parameter Load parameter
set into set into
ParameterSet object real-time application
Y Y
Explore Real-time
ParameterSet object simulation

Yes

Edit
parameters?

Parameters
okay?

Export parameters to
model from
parameter set file

Done tuning
parameters

When your parameter set values are tuned, you can:

7-40

Save and Reload Parameters by Using the MATLAB Language

Export the values from the parameter set to the model by using exportToModel function.
Save the ParameterSet object as a MAT file and share this MAT file with other developers.

Add the parameter set into the real-time application MLDATX file and set the parameter set as the
startup parameter set by using the addParamSet and updateStartupParameterSet functions.

You can save parameters from your real-time application while the real-time application is running or
between runs. You can save and restore parameters in your real-time application without rebuilding
the Simulink model. Load parameters to the same real-time application from which you saved the
parameter file. If you attempt to load a parameter file to a different real-time application or to a real-
time application that has changed since the parameter set was created, the load issues an error.

You can use the syncWithApp function to synchronize an out-of-sync ParameterSet object with the
specified real-time application. This function synchronizes the parameter name-value pairs and
synchronizes the model checksum saved in the ParameterSet object with the real-time application.
After synchronizing, the parameter set that you saved from the original application can be loaded into
the most updated application on the target computer.

You save and restore parameters by using the target object methods saveParamSet and
loadParamSet.

Requirements:

Create a Target object named tg connected to the target computer.
Load a real-time application on the target computer.

There are parameters to save from the application.

Save Current Set of Real-Time Application Parameters

To save a set of parameters from a real-time application to a parameter set file, use the
saveParamSet function. The real-time application can be loaded or running.

1

This example uses the model slrt _ex osc outport. To open this model, in the MATLAB
Command Window, type:

open_system((fullfile(matlabroot, 'toolbox', 'slrealtime’,
‘examples', 'slrt _ex osc outport')))

Select a descriptive file name for the parameters. For example, use the model name in the file
name.

In the MATLAB Command Window, type:

% build model and load real-time application
mdlName = 'slrt ex osc outport';
slbuild(md1lName);

tg = slrealtime('TargetPCl');
load(tg,mdlName);

% save parameter set to file
paramSetName = 'outportTypes';
saveParamSet (tg, paramSetName) ;

The Simulink Real-Time software creates a parameter set file named outportTypes on the
target computer.

7-41

7 Signals and Parameters

7-42

Load Saved Parameters to Real-Time Application

To load a parameter set file of saved parameters to a real-time application, use the LloadParamSet
function. Load parameters to the same real-time application from which you save the parameter set
file. If you attempt to load a parameter file to a different real-time application or to a real-time
application that has changed since the parameter set was created, the load issues an error. This
example uses the model slrt ex osc outport. You must have a parameters file saved from an
earlier run of saveParamSet to perform this procedure.

1 To open this model, in the MATLAB Command Window, type:

open_system((fullfile(matlabroot, 'toolbox"', 'slrealtime’,
‘examples', 'slrt_ex _osc_outport')))

2 From the collection of parameter set files on the target computer, select the one that contains the
parameter values to load. To get a list of available parameter set files, use the listParamSet
function.

3 In the Command Window, type:

% load real-time application
mdlName = 'slrt ex osc outport';
tg = slrealtime('TargetPCl');
load(tg,mdlName) ;

% load parameter set file
paramSetName = 'outportTypes';
loadParamSet (tg, paramSetName) ;

4 The Simulink Real-Time software loads the parameter values into the real-time application. For
an example that shows how to get the parameter values from a ParameterSet object and use
the object in the LoadParamSet function, see LoadParamSet.

View or Edit Parameter Values in Parameter Set

To view or edit parameters in a parameter set, use the ParameterSet object workflow. For more
information about this workflow, see “Save and Reload Parameters by Using the MATLAB Language”
on page 7-40.

1 Build the model and load the real-time application.

mdlName = 'slrt ex osc outport';
slbuild(md1Name);
tg = slrealtime('TargetPCl');

load(tg,mdlName) ;
2 Save the parameter set to a file.

paramSetName = 'outportTypes';
saveParamSet (tg, paramSetName) ;

3 Import the parameter set into a ParameterSet object on the development computer.

myParamSet = importParamSet(tg,paramSetName);

4 Open the ParameterSet in the Simulink Real-Time Parameter Explorer Ul In the explorer, you
can view and edit the parameter values in the object.

explorer(myParamSet);

Save and Reload Parameters by Using the MATLAB Language

5 After tuning the parameters, export the modified parameter set to the target computer and load
the parameters into the real-time application.

exportParamSet(tg,myParamSet);
loadParamSet (tg,myParamSet.filename);

Add or Update Startup Parameter Set for Application

You can add a ParameterSet object to a real-time application by using the addParamSet function.
After adding one or more ParameterSet objects to an application by using the addParamSet
function, you can choose which of these parameter sets is loaded into the real-time application on
startup by using the updateStartupParameterSet function.

This example loads a real-time application, imports the parameters into a ParameterSet object,
adds the ParameterSet object to a real-time application, and selects the parameter set as the
startup parameter set for the application.

load(tg,mdlName) ;

paramSetName = 'outportTypes';

saveParamSet (tg,paramSetName) ;

myParamSet = importParamSet(tg,paramSetName);
addParamSet (app_object,myParamSet) ;
updateStartupParameterSet(app_object,myParamSet);

See Also
delete | explorer | exportToModel | set | syncWithApp | exportParamSet | getparam |
getParameters | importParamSet | lListParamSet | LoadParamSet | saveParamSet |

setparam | addParamSet | updateStartupParameterSet | Application | ParameterSet |
Target

More About

. “Tune Parameters by Using Simulink Real-Time Explorer” on page 7-31
. “Tune Parameters by Using MATLAB Language” on page 7-34

. “Tune Parameters by Using Simulink External Mode” on page 7-36

. “Troubleshoot Instance-Specific Parameters Not Saved” on page 7-76

7-43

7 Signals and Parameters

Tunable Block Parameters and Tunable Global Parameters

7-44

To change the behavior of a real-time application, you can tune Simulink Real-Time tunable
parameters. In Simulink external mode, you can change the parameters directly in the block or
indirectly by using MATLAB variables to create tunable global parameters. Simulink Real-Time
Explorer and the MATLAB language enable you to change parameter values and MATLAB variables as
your real-time application is executing.

Note Simulink Real-Time does not support parameters of multiword data types.

Tunable Parameters

Simulink Coder defines two kinds of parameters that can be modified during execution: tunable block
parameters and tunable global parameters. Simulink Real-Time support for tunable parameters
includes:

» Variables for block parameters that are present in the top model workspace or MATLAB base
workspace. These variables are tunable global parameters.

» Literal expressions for block parameters that are present in the top model workspace or data
dictionary. These expressions are tunable block parameters.

* Instance-specific block parameters that are present in referenced models. These parameters are
tunable global parameters.
Tunable Block Parameters

A tunable block parameter is a literal expression in the top model workspace or data dictionary that
you reference in a Simulink block dialog box.

Suppose that you assign the value 5/2 to the Amplitude parameter of a Signal Generator block.
Amplitude is a tunable parameter.

Tunable Global Parameter

A tunable global parameter is a variable in the top model workspace or MATLAB base workspace that
you reference in a Simulink block dialog box. Suppose that you enter A in the Amplitude parameter
of a Signal Generator block. Variable A is a tunable parameter. You can tune the values of MATLAB
variables that are grouped in a parameter structure. For example:

1 Assign a parameter structure that contains the field Amp1 to variable A.

2 Enter A.Ampl in the Amplitude parameter of a Signal Generator block.

3 Change the amplitude of the signal generator by tuning the value of A. Amp1l in the MATLAB
workspace during simulation.

Tunable Global Parameters from Referenced Models

There are some limitations on tuning parameters in referenced models. For more information about
using instance-specific block parameters and using model arguments to configure these, see:

* “Limitations for Block Parameter Tunability in Generated Code”
» “Specify Instance-Specific Parameter Values for Reusable Referenced Model”

Tunable Block Parameters and Tunable Global Parameters

» “Parameterize a Referenced Model Programmatically”

Inlined Parameters

To optimize execution efficiency, you can change the Default parameter behavior option from
Tunable to Inlined on the Code Generation > Optimization pane.

You cannot tune inlined block parameters. You can define a tunable global parameter or
Simulink.Parameter object, enter it in the parameter field in the block dialog box, and tune the
MATLAB variable or object.

For more information about inlined parameters, see Default parameter behavior.

Tune Global Parameters by Using External Mode

In external mode, Simulink Real-Time connects your Simulink model to your real-time application.
The block diagram becomes a user interface for the real-time application.

You can change a block parameter value during execution in the block dialog box. When you click
OK, Simulink transfers the new value to the real-time application. For more information, see “Tune
Parameters by Using Simulink External Mode” on page 7-36.

You can change a tunable global parameter during execution by assigning a new value to the
MATLAB workspace. You must then explicitly command Simulink to transfer the data. Do one of the
following:

¢ Press Ctrl+D.

* On the Real-Time tab, click Prepare > Signal Table. On the Parameters tab, edit the
parameters and click Update Diagram.

Tune Global Parameters by Using Simulink Real-Time Explorer

During real-time execution, Simulink Real-Time Explorer becomes a user interface for the real-time
application.

To access a block parameter value, navigate to the block in the Explorer model hierarchy. You can
change the value in a text entry box in the parameter window. When you apply the new value,
Simulink Real-Time transfers the new value to the real-time application. For more information, see
“Tune Parameters by Using Simulink Real-Time Explorer” on page 7-31.

You can access a tunable global parameter at the top level of the model hierarchy. Change it the same
way as you would a tunable block parameter.

You can use Simulink Real-Time Explorer instrument panels to tune block parameters and global
parameters.

Tune Global Parameters by Using MATLAB Language
To change the values of tunable block parameters and tunable global parameters during execution,

use the Simulink Real-Time command setparam. For more information, see “Tune Parameters by
Using MATLAB Language” on page 7-34.

7-45

7 Signals and Parameters

These code examples use the model slrt_ex osc. To change a block parameter value, use a
nonempty block path and the parameter name. For example, to change the amplitude of the signal
generator:

slbuild(slrt_ex osc);

tg = slrealtime('TargetPCl');
load(tg, 'slrt ex osc')

start(tg);

setparam(tg, 'Signal Generator', 'Amplitude', 4.57)

To change a tunable global parameter, use the variable name. For example, to change the amplitude
of the signal generator via the parameter structure field A. Amp1:

slbuild(slrt ex osc);

tg = slrealtime('TargetPCl');
load(tg, 'slrt ex osc')
start(tg);

setparam(tg, '', 'A.Ampl', 4.57)

See Also
setparam | getparam

More About

. “Tune Inlined Parameters by Using Simulink Real-Time Explorer” on page 7-47
. Default parameter behavior

. “Specify Source for Data in Model Workspace”

. “Troubleshoot Parameters Not Accessible by Name” on page 7-75

. “Tune and Experiment with Block Parameter Values”

. “Share and Reuse Block Parameter Values by Creating Variables”

. “How Generated Code Stores Internal Signal, State, and Parameter Data”
. “Preserve Variables in Generated Code”

7-46

Tune Inlined Parameters by Using Simulink Real-Time Explorer

Tune Inlined Parameters by Using Simulink Real-Time Explorer

This procedure describes how you can tune inlined parameters through the Simulink Real-Time
Explorer.

Note Simulink Real-Time does not support parameters of multiword data types.

The procedure starts with the Simulink model slrt _ex osc _inlined. To open the model, in the
MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc inlined')))

Configure Model to Tune Inlined Parameters

This procedure makes the Amplitude parameter of the Signal Generator block tunable.

Open model slrt_ex osc inlined.

In the Simulink Editor, select the input to the Scope block and mark it for data logging by using
the Simulation Data Inspector.

3 Select the blocks containing the parameters that you want to tune. To represent the amplitude,
use the variable A.
a Double-click the Signal Generator block, and then enter A for the Amplitude parameter.
Click OK.
b Assign a constant to variable A. In the MATLAB Command Window, type:

A=4

The value is displayed in the MATLAB workspace.
Open the Configuration Parameters dialog box. On the Real-Time tab, click Hardware Settings.
5 Select Code Generation > Optimization > Default parameter behavior > Inlined.

Click Configure. The Model Parameter Configuration dialog box opens. The MATLAB workspace
contains the constant you assigned to A.

7 Select the line that contains your constant. Click Add to table.

7-47

7 Signals and Parameters

=): Model Parameter Configuration: slrt_ex_osc

Diescription

Cefine the global (funable) parameters foryour model. These parameters will affect the generated code by enabling accessto parameters

Source list Glohal itunahle) parameters

|W‘-TL”%B warkspace V| Marme Storage class Storage type qualifier

MHame ilA
1

|ru1|:|del default w | v

Feady

Refresh list Add to tahle == [et Femuove

[]2][cancel][Help][Apply

7-48

10

11

Click Apply, and then click OK.
In the Configuration Parameters dialog box, click Apply, and then OK.

Save the model as slrt_ex _osc_inlined. On the Simulation tab, from Save, click Save As.
For example, save it as slrt_ex osc_inlined.

Build the real-time application for your target computer. On the Real-Time tab, click Run on
Target > Build Application.

Initial Value

This procedure assumes that you have completed the steps in “Configure Model to Tune Inlined
Parameters” on page 7-47.

1
2

Open Simulink Real-Time Explorer. On the Real-Time tab, click Prepare > SLRT Explorer.

Load the slrt_ex osc inlined real-time application. Click Load Application, select the
application, and click Load.

Set the application stop time to inf.
To start execution, click Start.

In the Applications pane, expand both the real-time application node and the Model Hierarchy
node.

Tune Inlined Parameters by Using Simulink Real-Time Explorer

6 Select the Parameters tab.

' Simulink Real-Time Explorer

< b

TargetPC1 Stop Time
R Connected Load Start Inf REVIEWRESULTS
Application -
w
CONMECT TO TARGET COMPUTER | PREPARE RUN OM TARGET TUME PARAMETERS Y
Targets Tree Signals Parameters Target Configuration System Log Viewer L7]
= Target Computers
- u TargetPC1 (def Contents of: slrt_ex_osc_inlined {only) L{
4 sit_ex_osc)
Faramefers available fo fune on targef computer
Block Path Name Value Type Size
A 4 double [11]

4 3

¥ Application Tree 7]

sit_ex_osc_inlined

= Refresh Values

LOADED: sirt_ex_osc_inlined

7 Open the Simulation Data Inspector and view the signals you marked for signal logging. On the

Real-Time tab, click Data Inspector.

7-49

7 Signals and Parameters

) Simulation Data Inspector - untitled®

Q ~ L
Inspect Compare u Muxc1(1) mMuxc1(2)
Filter Signals
~ Run 5: sirt_ex_osc_inlined @ TargetPC1 [C...]
. - EH Mux:1
' Mux:1(1) —
v Mux:1(2) G
E . == TmpSignal ConversionAITAQSigLoggi...
¥ Il A Il n [l
AV + IBERVE IRDRYRAR e o
2
03 ‘
@ .
i\ /\ | M |
” FANDE S ST N,V S L A] va WS RN I . A N N —
\¥4 W W
-8
-8
Archive (4)
PFODEI‘UES 1] 001 0.02 0.03 0.04 0.05 0.08 007 0.08 0.09 0.10 on 0.12 0.13 0.14 0.15 0.16 017 0.18 012 0.20

7-50

Updated Value

This procedure assumes that you have completed the steps in “Initial Value” on page 7-48.

1 Change the value of the MATLAB variable A to 2. In Simulink Real-Time Explorer, type 2 into the

Value box, and then press Enter.

2 The Simulation Data Inspector display changes to show the new signal amplitude.

3 To stop execution, click Stop.

See Also

More About

“Tune Inlined Parameters by Using MATLAB Language” on page 7-51
“Display and Filter Hierarchical Signals and Parameters” on page 7-69
“Troubleshoot Parameters Not Accessible by Name” on page 7-75

Tune Inlined Parameters by Using MATLAB Language

Tune Inlined Parameters by Using MATLAB Language

You can tune inlined parameters through the MATLAB interface.

Note Simulink Real-Time does not support parameters of multiword data types.

You must have already built and downloaded the model slrt ex osc inlined. To open this model,
in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc _inlined'))

Tune Inlined Parameter

With the real-application slrt _ex osc_inlined already running, you can tune inlined parameter A
by using the setparam function.

1 Save the following code in a MATLAB file. For example, change_inlineA.

A =4,

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt _ex osc_inlined'));
slbuild('slrt ex osc inlined');

tg = slrealtime;

load(tg, 'slrt ex osc inlined');

setparam(tg,'',"'A",2);

2 Execute that MATLAB file. Type:
change inlineA
3 To see the new parameter value, type:

getparam(tg,'','A")
See Also
More About
. “Troubleshoot Parameters Not Accessible by Name” on page 7-75

7-51

7 Signals and Parameters

Tune Parameter Structures by Using Simulink Real-Time
Explorer

7-52

In this section...

“Create Parameter Structure” on page 7-52

“Replace Block Parameters with Parameter Structure Fields” on page 7-53
“Save and Load Parameter Structure” on page 7-53
“Tune Parameters in a Parameter Structure” on page 7-54

To reduce the number of workspace variables you must maintain and avoid name conflicts, you can
group closely related parameters into structures. See “Organize Related Block Parameter Definitions

in Structures”.

In this example, the initial model slrt ex osc has four parameters that determine the shape of the

output waveform.

Block Parameter Structure Field Initial Value
Expression

Signal Generator Freq spkp.sg freq 20

Gain Gain spkp.g_gain 100072

Gainl Gain spkp.gl gain 2*%0.2*1000

Gain2 Gain spkp.g2 gain 100072

Create Parameter Structure

This procedure groups some closely related parameters into structures.

Open model slrt_ex osc, and save a copy of the model to a working folder.
Open the Base Workspace in the Model Explorer. On the Modeling tab, click Base Workspace.

Click Add Simulink Parameter l::|,

In the Name column, type the name spkp.

In the Storage class field, select ExportedGlobal.
In the Value field, type as one line:

O U A W N R

struct('sg freq',20, 'g2 gain',1000"2, 'gl gain',2*0.2*1000, 'g gain',1000"2)
7 The field values duplicate the literal values in the dialog boxes. To change the field values, in row
spkp, click the Value cell and click Edit ﬁ

Tune Parameter Structures by Using Simulink Real-Time Explorer

Aodel Explorer — O >,

Q

B 3| & X HL-E-E-@ @ | |

Model Hierarchy o= == Contents of: ..e Workspace (and below) |Fi|'.EI' Contents | Base Worksg
v Simulink Root) = —
-bi Column View: | Default * | Show Details 4 object(s) *u'E The base (
HH Base Workspace) that are vis
variables ci
slrt_ex_osc ' block and =
ans <1%1 struct=>
logsout <1x1 struct=
H tg «1x1 slrealtime.Target >
o] spkp <1x1 struct>
spkpValue E
Field = Value
EE‘ sg_freq 20
] g2_gain 1000000
EE| g1_gain 400
 g_gain 1000000 '
€ il
€ >
< ¥ Contents Search Results

8 Click Apply.
9 Save the model as slrt ex osc struct. On the Simulation tab, from Save, click Save As.

Replace Block Parameters with Parameter Structure Fields

1 Inthe Signal Generator block, replace the value of parameter Frequency with
spkp.sg_freq.
In the Gain block, replace the value of parameter Gain with spkp.g_gain.
In the Gain1l block, replace the value of parameter Gain with spkp.gl gain.

4 Inthe Gain2 block, replace the value of parameter Gain with spkp.g2 gain.

Save and Load Parameter Structure

1 In Model Explorer, right-click row spkp.
2 C(Click Export selected and save the variable as slrt_ex osc _struct.mat.

7-53

7 Signals and Parameters

To load the parameter structure when you open the model, add a Load command to the PreLoadFcn
callback. To remove the parameter structure from the workspace when you close the model, add a
clear command to the CloseFcn callback. For more information, see “Model Callbacks”.

Tune Parameters in a Parameter Structure

If you have not completed the steps in “Create Parameter Structure” on page 7-52, “Replace Block
Parameters with Parameter Structure Fields” on page 7-53, and “Save and Load Parameter
Structure” on page 7-53, you can start by using the completed model.

1 To open the model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc_struct'));
load(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex osc struct.mat'));

2 Build the real-time application for the target computer. In the Real-Time tab, click Run on
Target > Build Application.

3 Open Simulink Real-Time Explorer. In the Real-Time tab, click Prepare > SLRT Explorer.

Connect to the target computer, then load the real-time application. Click Load Application to
select the slrt_ex osc_struct application.

Set the real-time application Stop Time to Inf.

Click the Parameters tab.

Start the real-time application.

Open the Simulation Data Inspector and view the signals from the real-time application.
In the Values text box for spkp(1) .gl gain, change the value to 800 and press Enter.
10 Observe the change to the signals in the Simulation Data Inspector.

© 00 N o un

11 Stop the real-time application.
See Also

More About

. “Organize Related Block Parameter Definitions in Structures”
. “Display and Filter Hierarchical Signals and Parameters” on page 7-69
. “Model Callbacks”

7-54

Tune Parameter Structures by Using MATLAB Language

Tune Parameter Structures by Using MATLAB Language

In this section...

“Create Parameter Structure” on page 7-55
“Save and Load Parameter Structure” on page 7-56
“Replace Block Parameters with Parameter Structure Fields” on page 7-56

“Tune Parameters in a Parameter Structure” on page 7-56

To reduce the number of workspace variables you must maintain and avoid name conflicts, you can
group closely related parameters into structures. See “Organize Related Block Parameter Definitions
in Structures”.

In this example, the initial model slrt ex osc has four parameters that determine the shape of the
output waveform.

Block Parameter Structure Field Initial Value
Expression

Signal Generator Freq spkp.sg freq 20

Gain Gain spkp.g_gain 100072

Gainl Gain spkp.gl gain 2*%0.2*1000

Gain2 Gain spkp.g2 gain 100072

Create Parameter Structure

This procedure groups some closely related parameters into structures.

Open model slrt_ex osc and save a copy to a working folder.

To create a parameter structure, in the MATLAB Command Window, enter:
kp = struct(...

'sg freq', 20,

‘g2 gain',1000"2,

‘gl gain', 2*0.2*1000,

‘g gain',1000"2)

kp =

struct with fields:

sg freq: 20
g2 gain: 1000000
gl gain: 400

g gain: 1000000
3 To make the parameter structure tunable on the target computer:

spkp = Simulink.Parameter(kp);
spkp.StorageClass = 'ExportedGlobal';
spkp.Value

ans =

7-35

7 Signals and Parameters

7-56

struct with fields:

sg_freq: 20
g2 gain: 1000000
gl gain: 400

g gain: 1000000

Save and Load Parameter Structure

To save the parameter structure spkp for later use, type:

save 'slrt ex osc struct.mat', 'spkp'

To load the parameter structure when you open the model, add a Lload command to the PreLoadFcn
callback. To remove the parameter structure from the workspace when you close the model, add a
clear command to the CloseFcn callback. For more information, see “Model Callbacks”.

Replace Block Parameters with Parameter Structure Fields

1 Inthe Signal Generator block, replace the value of parameter Frequency with
spkp.sg_ freq.

In the Gain block, replace the value of parameter Gain with spkp.g_gain.
In the Gain1l block, replace the value of parameter Gain with spkp.gl gain.
In the Gain2 block, replace the value of parameter Gain with spkp.g2 gain.

Tune Parameters in a Parameter Structure

If you have not completed the steps in “Create Parameter Structure” on page 7-55, “Replace Block
Parameters with Parameter Structure Fields” on page 7-56, and “Save and Load Parameter
Structure” on page 7-56, you can start by using the completed model.

1 To open the model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', ‘'slrealtime’,
‘examples', 'slrt ex osc struct'));
load(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt ex osc struct.mat'));

2 Build and download the model to the target computer.

slbuild('slrt ex osc struct');
tg = slrealtime('TargetPCl');
load(tg, 'slrt ex osc struct');

3 Set stop time to inf.
setStopTime(tg,inf);
4 Sweep the Gain value of the Gainl block from 200 to 800.

start(tg);

for g = 200 : 200 : 800
setparam(tg, '', 'spkp.gl gain', g);
pause(1l);

end

stop(tg);

Tune Parameter Structures by Using MATLAB Language

5 View the signals sent to the Scope block in the Simulation Data Inspector.

Simulink.sdi.view;
See Also

More About

. “Organize Related Block Parameter Definitions in Structures”
. “Model Callbacks”

7-357

7 Signals and Parameters

Define and Update Inport Data

7-58

In this section...

“Required Files” on page 7-58
“Map Inport to Use Square Wave” on page 7-58

“Update Inport to Use Sawtooth Wave” on page 7-60

You can create root-level input ports and use the Root Inport Mapper to define input data. You can
update the input data without rebuilding the model by using the MATLAB language.

Required Files

This procedure has these file dependencies:

* slrt ex osc inport — Damped oscillator that takes its input data from input port Inl and
sends its multiplexed output to output port Outl. To open this model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
"examples', 'slrt ex osc inport'))

* slrt_ex inport_square.mat— One second of output from a Signal Generator block that is
configured to output a square wave. To load this data, in the MATLAB Command Window, type:
load(fullfile(matlabroot, 'toolbox', 'slrealtime',

'examples', 'slrt _ex _inport square.mat'))

* slrt_ex inport_sawtooth.mat — One second of output from a Signal Generator block that is

configured to output a sawtooth wave. To load this data, in the MATLAB Command Window, type:

load(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt_ex_inport sawtooth.mat'))

Before starting this procedure, navigate to a working folder.

Map Inport to Use Square Wave

This procedure uses the Root Inport Mapper.

Open model slrt ex osc inport and save a copy to a working folder.
2 lLoadslrt ex inport square.mat and assign square to a temporary workspace variable for
use with the Root Inport Mapper.
waveform = square;
3 Double-click input port Inl.
Clear Interpolate data, and then click Connect Inputs.

This example chooses not to interpolate the data because the time listitems in the dataset are
identical to the sample time in the model. If the model were to be run with a different sample
time, consider whether to enable interpolation.

5 In the Root Inport Mapper, click From Workspace and select variable waveform. Clear the
other variables.

Define and Update Inport Data

6 In the Save to text box, enter a name such as ex_slrt inport waveform osc.mat, and then
click OK.

Select the map to model option Port order and, from the Options menu, select Update Model.
Click Map to Model.

9 To update the model with the mapped input data, select scenario waveform, and then click Mark
for Simulation.

untitled - Root Inport Mapper: sirt_ex_osc_inport™

ROOT IMPORT MAPPER

OE = @ H N

MAP TO MODEL | MODEL | SCRIPT

Open Save From From From Signals
- Spreadsheet MAT-File Workspace -
- - - .
FILE LIMNK EDIT &
SOURCE | SCEMARIO MAF MODE [+]
DATASET
— SIMULATION READINESS 1:33:04pm 10/2&/20
t waveform FPort Order &
Total Scenario Datasets: CI: Mot Q - Wil - Might o - Wl
1 Mapped Simulate Simulate 0 Mot
Simula
Marked __waveform
Far 2
Simulation:
SCENARIO DETAILS
Source: @ waveform - ex_siri_inport_waveform_osc.mat
Mode: Port Order
STATUS 5. | PORT B M
(/] 1 In we

10 Click Save.

Save the scenario under a name such as slrt _ex _inport waveform scenario.mldatx.
11 Close the Root Inport Mapper. In the Inl block parameters dialog box, click OK.

12 To display the output of the Mux block with the Simulation Data Inspector, right-click the output
signal and select Log Selected Signals.

13 You can now save, build, download, and execute the real-time application. Display the output by
using the Simulation Data Inspector.

7-59

7 Signals and Parameters

Q °| S | W - k| I O JE
Inspect Compare k @ |. Mux:1(1)
Filter Signals ® TmpSignal ConversionAtTAQSigLogging_InsertedFor_Mux_at_outpor...
@ e S B Mux:1(2)
» Run 4: sirt_ex_osc_inport ...

- Mux:1
RS .

4]
4 y
B)
2]
Archive (2) [- IR
» Run 1: sirt_ex_osc @ Targ... 4
® » Run 2: sirt_ex_osc @ Targ...
5
8
Properties A~ 0 0.1 0.2 0.3 0.4 0.5

Simulation Data Inspector - untitled™

W TmpSignal ConversionAtTAQSigLogoing_InsertedFor_Mux_at_outpor...

' M1, | ——

- I:E‘ TmpSignal Conversi...

7-60

Update Inport to Use Sawtooth Wave

You can update the inport data to use a different data file without rebuilding the real-time application.
The slrt_ex osc_inport.mldatx file must be in the working folder.

1 Joadslrt ex inport sawtooth.mat, and then assign sawtooth to the temporary variable
that you used with the Root Inport Mapper.

load((fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex inport sawtooth.mat')));
waveform = sawtooth;

Define and Update Inport Data

2 Create an application object.

app_object = slrealtime.Application('slrt ex osc inport');

3 Update the application object.

updateRootLevelInportData(app _object);
4 Load the updated object to the target computer and execute it.
tg = slrealtime;

load(tg, 'slrt ex osc inport');
start(tg);

5 Display the output by using the Simulation Data Inspector.

! Simulation Data Inspector - untitled™
< am
Q 4 |- a-E@ k| Sl
Inspect Bl i ® 4 Mux:1(1) ™ Mux1(2)
Filter Signals

@ - i
» Run 1: slrt_ex_osc_inport ... I I
. - I:E| Mux:1
g | |l |l |

Mux1(1) | ———

v
o —

—]

’ SERRERRRE

@ & P »

0 4 1 T 1
Archive b
-2 4 | | i L1 . {4 | . { 1
Y | | '.. [[1
Y R N
Properties A~ 0 005 010 015 020 025 030 035 040 045 0.50

7-61

7 Signals and Parameters

See Also

More About

. “Define and Update Inport Data by Using MATLAB Language” on page 7-63
. “Load Data to Root-Level Input Ports”

. “Inport Data Mapping Limitations” on page 7-68

. “Data Logging with Simulation Data Inspector (SDI)” on page 7-15

7-62

Define and Update Inport Data by Using MATLAB Language

Define and Update Inport Data by Using MATLAB Language

In this section...

“Required Files” on page 7-63
“Map Inport to Use Square Wave” on page 7-63
“Update Inport to Use Sawtooth Wave” on page 7-64

You can create root-level input ports and use the MATLAB language to define input data and to
update the input data without rebuilding the model.

Required Files

This procedure has these file dependencies:

*+ slrt ex osc inport — Damped oscillator that takes its input data from input port Inl and
sends its multiplexed output to output port Outl. To open this model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’,
‘examples', 'slrt _ex osc_inport'))

* slrt ex inport square.mat— One second of output from a Signal Generator block that is
configured to output a square wave. To load this data, in the MATLAB Command Window, type:
load(fullfile(matlabroot, 'toolbox', 'slrealtime',

'examples', 'slrt ex inport square.mat'))

* slrt_ex inport_sawtooth.mat — One second of output from a Signal Generator block that is

configured to output a sawtooth wave. To load this data, in the MATLAB Command Window, type:

load(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt_ex_inport sawtooth.mat'))

Before starting this procedure, navigate to a working folder.

Map Inport to Use Square Wave

This procedure maps an inport.
1 Openslrt_ex osc_inport.

model = fullfile(matlabroot, 'toolbox', 'slrealtime',
"examples', 'slrt ex osc inport');

open_system(model);

myFolder = fullfile(userpath, 'temp');

save_system(model, [myFolder '/slrt ex osc inport.slx']);

2 Loadslrt ex inport square.mat, and then assign square to a temporary workspace
variable.

load((fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex inport square.mat')));
waveform = square;

3 Openslrt ex osc inport/Inl

7-63

7 Signals and Parameters

7-64

inport = [model '/Inl'l];
load system(inport);

Turn off inport data interpolation.

set param(inport,'Interpolate’, 'off');
Set the external input variable.

set param(model, 'ExternalInput', 'waveform');
Load external input data.

set param(model, 'LoadExternalInput','on');

You can now build, download, and execute the real-time application.
slbuild(model);

tg = slrealtime('TargetPCl');

load(tg,model);
start(tg);

View the signals in the Simulation Data Inspector.

Simulink.sdi.view;

Update Inport to Use Sawtooth Wave

You can update the inport data to use a different data file without rebuilding the real-time application.
The slrt_ex osc_inport.mldatx file must be in the working folder.

1 Joadslrt ex inport sawtooth.mat, and then assign sawtooth to the temporary variable
that you used with the Root Inport Mapper.
load((fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt_ex _inport sawtooth.mat')));
waveform = sawtooth;

2 Create an application object.
app_object = slrealtime.Application('slrt ex osc inport');

3 Update the application object.
updateRootLevelInportData(app_object);

4 Download the updated object to the target computer and execute it.
tg = slrealtime;
load(tg, 'slrt ex osc inport');
start(tg);

5 View the signals in the Simulation Data Inspector.
Simulink.sdi.view;

See Also

More About

“Define and Update Inport Data” on page 7-58

Define and Update Inport Data by Using MATLAB Language

“Load Data to Root-Level Input Ports”
“Inport Data Mapping Limitations” on page 7-68
“Data Logging with Simulation Data Inspector (SDI)” on page 7-15

7-65

7 Signals and Parameters

Stimulate Root Inport by Using MATLAB Language

This example shows how to stimulate root inports in a model by using the Stimulation object and
related functions:

* start

* stop

» getStatus

* reloadData

¢ pause

Open Model and Map Inport to Wave Data

Open model slrt_ex osc_inport. Save the model to a working folder. Map the inport to use
square wave data. For inport Inl, interpolated is off.

model = ('slrt ex osc inport');

open_system(model);

load(fullfile(matlabroot, 'toolbox', 'slrealtime’, "examples', 'slrt ex inport square.mat'));
waveform = square;

set param(model, 'Externallnput', 'waveform');

set param(model, 'LoadExternalInput', 'on');
(

set param(model, 'StopTime', "Inf");
G—

Gain
I
b—hb—b - Izl—o—h-lzl—u
In1 ; _ Integrator Integrator
Gain2 Sum g g
Gain1 > [:]

¥

Scope

Model slrt_ex_osc_inport
Simulink Real-Time example model

Copyright 2020 The MathWorks, Inc.

Build Model and Download Real-Time Application

Build, download, and execute the real-time application.
evalc('slbuild(model)");

tg = slrealtime('TargetPCl");
load(tg,model);

7-66

Stimulate Root Inport by Using MATLAB Language

Stimulate Root Inport Data

Start root inport stimulation of inports 1. Open Scope block and observe results.

start(tg.Stimulation,[1]);
start(tg);

Pause root inport stimulation of inport 1.
pause(tg.Stimulation, [1]);
Stop and start the stimulation of inport 1.

stop(tg.Stimulation,[1]);
start(tg.Stimulation,[1]);

Check the status of stimulation of the inports.
getStatus(tg.Stimulation, 'all');

Create a time-series object to load data to an inport.
sampleTime = 0.1;

endTime = 10;

numberOfSamples = endTime * 1/sampleTime + 1;

timeVector = (O@:numberOfSamples) * sampleTime;
u = timeseries(timeVector*10,timeVector);

Object u is created for 10 seconds. Load it to the inport 1. Stimulation of an inport should be stopped
before loading data.

stop(tg.Stimulation,[1]);
reloadData(tg.Stimulation, [1],u);

Stop real-time application and close all.

stop(tg);
bdclose('all');

7-67

7 Signals and Parameters

Inport Data Mapping Limitations
In Simulink Real-Time, you cannot:

* Create data at run time for each time step by using the input u = UT(t) for MATLAB functions or
expressions.

* Import complex values and asynchronous function-call signals into top-level input ports.
* Import signals of type Stateflow.SimulationData.State into top-level input ports.

See Also

More About

. “Define and Update Inport Data” on page 7-58
. “Load Data to Root-Level Input Ports”

7-68

Display and Filter Hierarchical Signals and Parameters

Display and Filter Hierarchical Signals and Parameters

In this section...

“Hierarchical Display” on page 7-69
“Filtered Display” on page 7-70

“Sorted Display” on page 7-71

In Simulink Real-Time Explorer, the default view of the signal and parameter lists shows the signals
and parameters only at the hierarchy level that you selected. You can display signals and parameters
for the current level and below and filter the display to show only the items that you are interested in.

Hierarchical Display

To show signals and parameters from the current level and below, navigate to the hierarchical level

that you are interested in. Click Contents of (E| on the toolbar).

The figure shows the contents of the top level of the slrt_ex sf car real-time application. To open
this model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
‘examples', 'slrt ex sf car'))

7-69

7 Signals and Parameters

Simulink Real-Time Explorer

TargetPC1 3’ |> Stop Time
Y& Connected Load Start REVIEW RESULTS
Application - -
CONMECT TO TARGET COMPUTER PREPARE RUM ON TARGET TUME PARAMETERS ™
+ Targets Tree (v} Signals Parameters Target Configuration System Log Viewer o
= Target Computers
- n TargetPC1 (def %]Cﬂntents of: slri_ex_sf_car (only) L{
& slrt_ex_si ¢
Signals availsble on target computer Signals inin... i
Block Path Signal MNa... Block Path
sint_ex_sf_car/Engine:1
sint_ex_sf_carThreshol...
slrt_ex_sf_carThreshol.
sint_ex_si_car/User Inp... -
sirt_ex_sf_carUser Inp... *-
. ' slrt_ex_sf_carVehicle:1 |vehicle speed
* Application Tree v sii_ex_sf_carVehicle:2 |[transmission ...
~ [Pg| slrt_ex_sf car sirt_ex_sf_car/shift_log...
Engine slrt_ex_sf_carfiransmis... [impeller torque
Threshold Calculat slrt_ex_sf_cartransmis... |output torque
User Inputs
Vehicle
shift_logic
~ [Ba| transmission
Torque Convert
transmission raf
. R Highlight in Mode Start Stream| | Stop Sirear| | View Values
14 LOADED: sirt_ex_sf_car

Filtered Display

To restrict the display to signals or parameters with a particular characteristic, use the Filter text
box. You can restrict the scope of the filtered display by selecting a level of the application in the
Application Tree panel.

Simulink Real-Time Explorer supports filtering by values in these columns:

* Signals — Block Path and Signal Name

7-70

Display and Filter Hierarchical Signals and Parameters

¢ Parameters — Block Path and Name

For example, to restrict the display of signals and parameters to the shift logic subsystem, select
column Signal Name. Type shift logic into the Filter text box.

Simulink Real-Time Explorer

TargetPC1 E’ |> Stop Time
u Connected Load Start REWIEW RESLULTS
Application - -
CONMECT TO TARGET COMPUTER PREPARE RUM ON TARGET TUME PARAMETERS ™
Targets Tree Signals Parameters Target Configuration System Log Viewer (7]
= Target Computers
- n TargetPC1 (def Cont&nts of: slrt_ex_sf_car (only) L{ shiﬂ_logid
slrt_ex s ¢
Signals available on target computer Signails in ... i
Block Path Signal Na... Block Path
slri_ex_si_canshiit_log. ..
-
1 3
Application Tree
= sii_ex_sf_car
Engine
Threshold Calculat
User Inputs
Vehicle
shift_logic
= [Bz| transmission
Torque Convert
transmission rat
. R Highlight in Mode start Stream| | Stop Siream | | View Values
I4 LOADED: sirt_ex_sf _car

Sorted Display

To group signals and parameters by columns, select the column head, hover the cursor near the right
border of the column head (displays the Sort by icon), and click the Sort by icon.

7-71

7 Signals and Parameters

Explorer supports grouping by the following columns:

* Signals — Block Path and Signal Name
* Parameters — Block Path, Name, Value, Type, and Size

For example, to sort signals by name, right-click the Signal Name column and select the Sort by
icon.

b Simulink Real-Time Explorer

TargetPC1 E’ |> Stop Time
Y& Connected Load Start REVIEW RESULTS
Application - -
CONMECT TO TARGET COMPUTER PREPARE RUM ON TARGET TUME PARAMETERS ™
v Targets Tree o Signals Parameters Target Configuration System Log Viewer o
= Target Computers
- n TargetPC1 (def Contents of: slri_ex_sf_car (only) ()
& 5t ex_sic
Signals available on target computer Signails in ... i
Block Path Signal Na... 4 Block Path
sii_ex_sf_carVehicle:1 |vehicle speed
slrt_ex_sf_car/Vehicle:2 |transmission ..
sint_ex_sf_cartransmis... |output torque
sint_ex_sf_carfransmis... [impeller torque -
slrt_ex_sf_car/Engine:1 *-
. ’ sint_ex_sf_carThreshol...
~ Application Tree v sint_ex_sf_carThreshol...
- slrt_ex_sf car siit_ex_si_car/User Inp...
Engine sint_ex_si_car/User Inp...
Threshold Calculat sirt_ex_sf_car/shift_log...
User Inputs
Vehicle
shift_logic
- [Bg| transmission
Torque Convert
transmission raf
. R Highlight in Mode start Stream| | Stop Siream | | View Values
4 LOADED: sirt_ex_sf_car

7-72

Troubleshoot Signals Not Accessible by Name

Troubleshoot Signals Not Accessible by Name

I cannot monitor, trace, or log some signal types in the real-time application.

What This Issue Means

You cannot monitor, trace, or log by name these types of signals in the real-time application:

 Virtual or bus signals (including signals from bus creator blocks and virtual blocks). For example,
assume that you connect the output of a Mux block (a virtual block) to a Simulink Scope block.
The Scope block displays the names of the Mux input signals rather than the names of the Mux
output signals.

» Signals that Simulink optimizes away after you set the Signal storage reuse or Block reduction
configuration parameters.

The output of a block that was optimized away is replaced with the corresponding input signal to
the block. To access these signals, make them test points.

* Signals of complex or multiword data types.
» If a block name consists only of spaces, Simulink Real-Time Explorer does not display a node for
signals from that block. To reference such a block:
* Provide an alphanumeric name for the block.
* Rebuild and download the model to the target computer.
* Reconnect the MATLAB session to the target computer.

Try This Workaround

Check these signal types are not being monitored, traced, or logged by name in the real-time
application::

* Virtual or bus signals (including signals from bus creator blocks and virtual blocks)

» Signals that Simulink optimizes away

+ Signals of complex or multiword data types

* Blocks without alphanumeric names

See Also

Gain

More About

. “Nonvirtual and Virtual Blocks”

. “Composite Interface Guidelines”

. Signal storage reuse

. “Block reduction”

. “Troubleshoot Parameters Not Accessible by Name” on page 7-75
. “Internationalization Issues” on page 7-77

7-73

7 Signals and Parameters

External Websites
. MathWorks Help Center website

7-74

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Troubleshoot Parameters Not Accessible by Name

Troubleshoot Parameters Not Accessible by Name

I cannot observe or tune some parameters in the real-time application.

What This Issue Means

Reasons that you cannot observe or tune some parameters in the real-time application are:

* Simulink Real-Time does not support parameters of multiword data types.

* During execution, you cannot tune parameters that change the model structure, for example, by
adding a port. To change these parameters, you must stop the execution, change the parameter,
and rebuild the real-time application.

Try This Workaround

Check the parameters for the issues described in “What This Issue Means” on page 7-75.

See Also

More About

. “Troubleshoot Signals Not Accessible by Name” on page 7-73
. “Internationalization Issues” on page 7-77

External Websites
. MathWorks Help Center website

7-75

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

7 Signals and Parameters

Troubleshoot Instance-Specific Parameters Not Saved

The saveParamSet function does not save instance-specific parameters and parameters that have
custom storage classes to a MAT file for loading by using the LoadParamSet function. When I use
the saveParamSet function on a model that contains only instance-specific parameters, I get an
error message.

Error using slrealtime.Target/saveparamset
TargetPCl: Error writing file

What This Issue Means
The saveParamSet function saves parameters that appear in the rtP structure of the model.

Instance-specific parameters and parameters with custom storage classes are global variables that
are not by default represented in the rtP structure.

Try This Workaround

You can use the saveParamSet function to save parameter sets from models that include instance-
specific parameters or parameters that have custom storage classes. But, these parameters do not
appear in the saved parameter set.

See Also
ParameterSet

More About
. “Save and Reload Parameters by Using the MATLAB Language” on page 7-40

7-76

Internationalization Issues

Internationalization Issues

Simulink Real-Time inherits the internationalization support of the products that it works with:
Simulink, Simulink Coder, and Embedded Coder®. Signal and parameter names that include
Unicode® characters are displayed as expected in Simulink Real-Time Explorer and at the MATLAB
command line.

When you use the Simulation Data Inspector to observe signals, the non-ASCII signal names are
displayed as expected. For example, assume that the signal with ID 1 appears in an English-language
and a Japanese-language version of the same model. In the English-language version, the signal label
is inputl and the block path is blockl/block?2. In the Japanese-language version, the signal label
is A#1 1 and the block path is 7Avy% 1/70v% 2.

Third-party code (for example, parsers for vendor configuration files) sometimes does not support
cross-locale, cross-platform internationalization. For such code, you must give files and folders locale-
specific names. For example, when parsing a configuration file on an English-locale machine, name
the file and enclosing folder with English-locale-specific names.

See Also

More About

. “Troubleshoot Signals Not Accessible by Name” on page 7-73
. “Troubleshoot Parameters Not Accessible by Name” on page 7-75

7-77

Execution Modes

8 Execution Modes

Execution Modes

The Simulink Real-Time RTOS has two mutually exclusive execution modes.

Interrupt mode — The scheduler implements real-time single-tasking and multitasking execution
of single-rate or multirate systems, including asynchronous events (interrupts). You can interact
with the target computer while the real-time application is executing at high sample rates. To use
this real-time mode:

* Leave the Force polling mode configuration parameter disabled (default).
* Leave the pollingThreshold application option at the default value.

Polling mode — The RTOS executes real-time applications at sample times close to the limit of the
CPU. Using polling mode with high-speed and low-latency I/O boards and drivers enables you to
achieve real-time application sample times that you cannot achieve by using interrupt mode.
Because polling mode disables interrupts on the processor core where the model runs, it imposes
restrictions on the model architecture and on target communication. The base rate of the real-
time application is always running when executing in polling mode. To use this real-time mode,
either:

* Enable the Force polling mode configuration parameter.

* Set the pollingThreshold application option sample time value to a rate below the base rate
of the model.

For more information, see Force polling mode and Application.

See Also
Thread Trigger | “TLC Command-Line Options”

Related Examples

“Concurrent Execution on Simulink Real-Time” on page 16-8

More About

8-2

“Set Configuration Parameters”

“Performance Optimization”

“About RTOS Tasks and Priorities”

“Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-33

Real-Time Application Execution

Working with the Target Computer
Command Line

* “Control Real-Time Application at Target Computer Command Line” on page 9-2
+ “Execute Target Computer RTOS Commands at Target Computer Command Line” on page 9-3

9 Working with the Target Computer Command Line

Control Real-Time Application at Target Computer Command

Line

9-2

The Simulink Real-Time software provides a set of commands that you can use to interact with the
real-time application on the target computer. You can load, start, stop, and check the status of the
real-time application.

These commands let you interact with real-time applications on standalone target computers that are
not connected to Simulink Real-Time software on a development computer.

To enter commands, type the commands by using a keyboard attached to the target computer or by
using an SSH utility (such as PuTTY) to send commands to the target computer from a development
computer.

Note To run user commands, log in as user slrt by using password slrt. To run the system
commands (for example, date, ntdate, ntpd, rtc, or setting the time zone), login as user root by
using password root.

The target computer commands are case-sensitive. For more information, see “Target Computer
Command-Line Interface”.

To read the target computer console log, open the Simulink Real-Time Explorer and click the
System Log Viewer tab. You can also export the system log by using the SystemLog function.

See Also
Simulink Real-Time Explorer | slLrtExplorer | SystemLog

Related Examples
. “Target Object Commands”
. “Target Computer RTOS System Commands”

Execute Target Computer RTOS Commands at Target Computer Command Line

Execute Target Computer RTOS Commands at Target Computer
Command Line

To enter target computer RTOS commands, type the commands by using a keyboard attached to the
target computer or by using an SSH utility (such as PuTTY) to send commands to the target computer
from a development computer.

The target computer commands are case-sensitive. For more information, see “Target Computer
Command-Line Interface”.

The command examples use the PuTTy SSH utility. You can download and install this utility from
www.putty.org.

Note To run user commands, log in as user slrt by using password slrt. To run the system
commands (for example, date, ntdate, ntpd, rtc, or setting the time zone), login as user root by
using password root.

Boot the target computer.
2 Connect the development computer and target computer. In the MATLAB Command Window,
type:

tg = slrealtime;
connect(tg);

3 Start the SSH utility. This example uses PuTTY.
Load the PuTTY session for the target computer and click Open.

9-3

https://www.putty.org

9 Working with the Target Computer Command Line

._{{ PuTTY Configuration

Category:
=- Sgassiun Basic options for your PuTTY session
o TE"" L.uglging Specify the destination you want to connect to
Fmina Host Mame (or IP address) Port
- Keyboard
. Bel 192.168.7.5 |[22
- Features Connection type:
=~ Window (JRaw () Telnet () Rlogin (@ 55H () Seral
Pnppearance Load, save or delete a stored session
- Behaviour
. Translation Saved Sessions
- Selection | TargetPC1_QNX |
- Colours .
Default Settings
& Connection I r—
.. Data Save
- Proxy
. Telnet Delete
- Rlagin
- 55H
- Senal Cloze window on exit:
i Aways (JNever (8 Only on clean exit
About Help Open Cancel

5 To configure the target computer date, log in to the PuTTY session as user root with password
root.

6 Set the time zone. This example sets the time zone to Eastern Standard Time.

env TZ=EST5EDT
export TZ=ESTS5EDT
setconf CS TIMEZONE EST5EDT

7 Set the date and time. This example sets the date and time to September 10, 2019 at 11:25 AM.

date 091011252019
Tue Sep 10 11:25:15 EDT 2019

8 Set the hardware clock from the system date and time.

rtc -s hw

See Also
Targets

Related Examples
. “Target Object Commands”
. “Target Computer RTOS System Commands”

9-4

Execute Target Computer RTOS Commands at Target Computer Command Line

External Websites
. QNX Momentics IDE 7.1 User’s Guide
. QNX Momentics IDE 7.1 User’s Guide, Utilities Reference

https://www.qnx.com/developers/docs/7.1/index_frames.html
https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.utilities/topic/about.html

Tuning Performance

* “CPU Overload” on page 10-2

* “Monitor CPU Overload Rate” on page 10-3

* “Execution Profiling for Real-Time Applications” on page 10-7

* “Reduce Build Time for Simulink Real-Time Referenced Models” on page 10-13

10 Tuning Performance

CPU Overload

10-2

Sometimes a real-time application running on the target computer does not have enough time to
complete processing before the next time step. This condition is called a CPU overload. An overload is
registered every time an execution step is triggered while the previous step is running.

See Also
SLRT Overload Options

Related Examples
. “Monitor CPU Overload Rate” on page 10-3
. “Concurrent Execution on Simulink Real-Time” on page 16-8

More About
. “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-33

Monitor CPU Overload Rate

Monitor CPU Overload Rate

The SLRT Overload Options block outputs the current CPU overload count for the identified sample
rate.

This example shows how to design a model that uses the SLRT Overload Options block to monitor the
rate at which CPU overloads occur. The rate of CPU overloads information can be useful when tuning
performance of a model for which a low CPU overload rate is acceptable.

Open, Build, and Run the Model
In the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox','slrealtime', 'examples','slrt ex overload'));

£
TID # TID Count f——M+ double > /
SLRT count
Orverload Oplions
Max TETf——»—
Busy-wait TET
Subsystem
d .
é B il uint32

Model slri_ex_owverload

Simulink Real-Time example model

Caopyright 2020 The MathWWorks, Inc.

Name the signal coming out from the outport of rate limiter block as Rate Limiter and log it in the
Simulation Data Inspector.

p = get param('slrt ex overload/Rate Limiter', 'PortHandles');

1 = get param(p.Outport, 'Line');

set param(1l, 'Name', 'Rate Limiter');
Simulink.sdi.markSignalForStreaming('slrt ex overload/Rate Limiter',1,'on');

Build the model.

model = 'slrt ex overload';
set param(model, 'RTWVerbose', 'off');
evalc('slbuild(model)"');

Download the application and run it on the target computer.

tg = slrealtime;
connect(tg);
load(tg,model);
start(tg);
pause(20);
stop(tg);

10-3

10 Tuning Performance

Open Simulation Data Inspector

To view the rate at which CPU overloads occur, open the Simulation Data Inspector.
In the MATLAB Command Window, type:

Simulink.sdi.view;

Examine CPU Overload Rate Data

In the Simulation Data Inspector, the graph shows:

» Bottom rising stair step signal -- This signal indicates the number of CPU overloads that occurred.

» Top rising stair step signal -- This signal indicates the number of CPU overloads that are allowed,
which is (occurred + 2).

* Rising slew rate -- This signal indicates the rate at which CPU overloads occur. When the rising
slew rate becomes greater than the top rising stair step signal, the rate of CPU overloads is
greater than are allowed.

ONE 20 ANl

<\ Simulation Data Inspector - untitled* - O X

Q C4 X
Inspect Compare
Filter Signals

= Run 1:

s allowed ——
. o count —
TET —
B O ——
¥

Archive

Properties

m allowed m count W Rate Limiter

sirt_ex_overload @ myPC [Current]

10-4

Modify Rate of CPU Overloads

To modify the rate at which CPU overloads occur in the model, modify the Constant2 parameter
value.

Monitor CPU Overload Rate

Modify Allowed Rate of CPU Overloads

To modify the rate of CPU overloads that are acceptable in the model, modify the RisingSlewLimit
parameter value.

Build and Run Model with Changed Overload Rates

In the MATLAB Command Window, type:

load(tg,model);

To modify the rate of CPU overloads that are acceptable in the model
tg.setparam('slrt ex overload/Rate Limiter', 'RisingSlewLimit',0.004);
To modify the rate at which CPU overloads occur in the model
tg.setparam('slrt _ex overload/Constant2', 'Value',4);

run the modified application on the target computer

start(tg);

pause(20);

stop(tg);

In the Simulation Data Inspector, compare the signal data from the simulation runs and observe the
change to the CPU overload rate.

10-5

10 Tuning Performance

4\ Simulation Data Inspector - untitled”

Q 1 < ®

= E-| Q- h |

ra
La

Ok o

Inspect Compare M allowed M count M Rate Limiter M allowed M count M Rate Limiter
Filter Signals =
- Run 2: sirt_ex_overload @ myPC [Current]
- o allowed L =
o count L
TET — 5
E | Rate Limiter —
¥ .

Archive (1) -
~ Run 1: sirt_ex_overload @ myPC

@ &P -

v allowed
v count

TET

R

Properties -~] 1 z 3 4 5 [

bdclose('all');

See Also
SLRT Overload Options

Related Examples

. “Concurrent Execution on Simulink Real-Time” on page 16-8

More About
. “CPU Overload” on page 10-2
. “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-33

10-6

Execution Profiling for Real-Time Applications

Execution Profiling for Real-Time Applications

This example shows how you can profile the task execution time and function execution time of your
real-time application that is running on the target computer. Using that information, you can then
tune its performance.

Profiling is especially useful if you configure your real-time application to take advantage of multicore
processors on the target computer. To profile the real-time application:

* In the Configuration Parameters dialog box for the model, enable the collection of function
execution time data during execution.

* Build, download, and execute the model.
» Start and stop the profiler.
» Display the profiler data.

The Execution Profiler and SLRT Overload Options block use different mechanisms to measure TET
and do not generate identical TET values.

Note: You can also use the Simulink® Schedule Editor to partition the model. In the Simulink Editor,
click the Modeling tab and select Design > Schedule Editor. For more information, see “Create
Partitions from a Rate-Based Model”.

Configure Real-Time Application for Function Execution Profiling
The model is slrt_ex _mds_and tasks. To open this model, open the subsystem models first:

* slrt ex mds subsystem1
* slrt ex mds subsystem?2

slrt ex mds and tasks
1. Open model slrt_ex mds and tasks.

2. In the top model, open the Configuration Parameters dialog box. Select Code Generation >>
Verification.

3. For Measure function execution times, select Coarse (reference models and subsystems
only). The Measure task execution time check box is selected and locked. Or, in the MATLAB
Command Window, type:

set param('slrt ex mds and tasks','CodeProfilingInstrumentation','Coarse');

4. Click OK. Save model slrt_ex mds and tasks in a local folder.

Generate Real-Time Application Execution Profile

Generate profile data for model slrt_ex mds and tasks on a multicore target computer.

You must have previously configured the target computer to take advantage of multiple cores and
configured the model for task and function execution profiling.

1. Open, build, and download the model.

10-7

10 Tuning Performance

model = 'slrt ex mds and tasks';
open_system(model);
evalc('slbuild(model)"');

tg = slrealtime;

load(tg,model);
setStopTime(tg,20);

Concurrent Execution on Simulink Real-Time
lllustrated by Profiling Tool

ol el
slrt_ex_mds_subsystemn1 il
Cutl p————] sirt_ex_mds_subsystem2

Cut! p—————]

Crut2 f——w—

] 1 Cut? b———#»—]

Outd p———»—]
Cutd ——»—

Crutd

Copyright 2020-2021 The MathWaorks, Inc.

When you include profiling, the Code Generation Report is generated by default. It contains links to
the generated C code and include files. By clicking these links, you can examine the generated code
and interpret the Code Execution Profile Report.

10-8

Execution Profiling for Real-Time Applications

Code Generation Report - O *
€ i 4 & mechome
Content 3 ! 1
ontents Code Generation Report for 'slrt_ex_mds_and_tasks
Summary
Subsystem Report Model Information
Code Interface Report
Author The MathWorks, Inc.
Generated Code Last Modified By The MathWorks, Inc.
Model Version 1.36
[-]1 Model files . .)
Tasking Mode MultiTasking
slrt_ex_mds_and_tasks.cpp
slrt_ex_mds_and_tasks.h Configuration settings at time of code generation

slrt_ex_mds_and_tasks_private.h

slrt_ex_mds_and_tasks_types.h Code Information

[-] Data files
slrt_ex_mds_and_tasks_data.cpp System Target File slrealtime.tlc

Hardware Device Type Intel->x86-64 (Linux 64)

[+] Shared files (2) e 9.3 (R2020b) 24-Mar-2020

[+] Interface files (1) Timestamp of Generated Mon Apr 13 21:14:15 2020
Source Code

[+] Other files (2) Location of Generated H:\Documents\MATLAB\Examples\slrealtime-ex16897675\New
Source Code Folder\slrt_ex_mds_and_tasks_slrealtime_rtw)\

Referenced Models Type of Build Top Model

sirt_ex_mds_subsystem1 Objectives Specified

slrt_ex_mds_subsystem2

Additional Information

Code Generation Advisor Mot run

2. Start the real-time application, then start the profiler.

startProfiler(tg);
start(tg);
pause(5);
stopProfiler(tg);
stop(tg);

3. Display the profiler data.

while 1
tmp = strcmp(tg.ProfilerStatus, 'DataAvailable');
if tmp == true
break
end
end
profiler data = getProfilerData(tg);
plot(profiler data);
report(profiler data);

Processing data on target computer
Transferring data from target computer

10-9

10 Tuning Performance

Processing data on host computer

The Execution Profile schedule display in the Simulation Data Inspector shows how scheduling is
generated in real-time simulation. To open the schedule display in the Simulation Data Inspector after
creating the executionProfile object, use the executionProfile.schedule() function.

Simulation Data Inspector - untitled®

Q @ [y

Inspect Compare B Task: Model1_R1 [0.001 0]
Filter Signals running
——— = preempted =
+ MAME —— notéctive : : 7 7 7 T r 7
- Run 1: sirt_ex_mds_and_tasks [Current] Bizas MR e uems el i iz Eles
< Task: Model1_R1[0.001 0] —— . W Task: Model1_R1[0.001 0] m Task: Model2_R1 [0.001 0] m Usage Core 1
. running
o Task: Model2_R1 [0.001 0] | | preempted _‘_‘_‘_‘_—_—“M
HCIMVE T T T T T T T T
Task: Model1_R2 [0.002 0] — 60e+d S0e+8 1.0e+7T 12e+7 1.4e+7 18e+7 18247 2.0e+7
E Task: Model1_R3 [0.003 0] — B Task: Model1_R2 [0.002 0]
. — running
Task: Model2_R3 [0.003 0] preemted |
- S notActive T T T T T T T T
I‘LI Task: Model1_R4[0.004 0] B.O2+8 G0o+8 10247 12647 14247 18247 18247 20847
Task: Model2_R4 [0.004 0 —
R4l] W Task: Model1_R3 [0.003 0]
» Core 1 running
/ preempted
) Core 2 — notActive : . : r r r . .
6.0e+8 8.0=+8 1.0e+7 1.2e+7 14e+7 1.82+7 1.82+7 2.0e+7
Core 3 —
B W Task: Model2_R3 [0.003 0]
Core 4] running
preempted -
v Usage Core 1 — L otActive . . ; I - ! . .
¢ J Corp 2 60=+8 80=+H8 1047 1247 14247 1682+7 18247 20247
sage Core —
Usage Core 3 — W Task: Model1_R4 [0.004 0]
Y running
preempted
@ DE=EX .

B0+ G048 10247 12647 14247 18247 18247 20847

W Task: Model2_R4 [0.004 0]

running
preempted
HOMVE T T T T T T T T
BOe+6 S0e+6 10247 12247 1de+7 18247 18247 2047
Core 1
Archive gsgg&% E
Properties B0e+B 8046 10e47 12e47 14047 1Be+7 18247 20e47

The Code Execution Profiling Report displays model execution profile results for each task.

» To display the profile data for a section of the model, in the Section column, click the Membrane
button next to the task.

* To display the TET data for the section in Simulation Data Inspector, click the Plot time series
data button.

10-10

Execution Profiling for Real-Time Applications

» To view the section in Simulink Editor, click the link next to the Expand Tree button.

» To view the lines of generated code corresponding to the section, click the Expand Tree button,
and then click the View Source button.

Code Execution Profiling Report - O >

Code Execution Profiling Report for slrt ex mds and tasks

The code execution profiling report provides metrics based on data collected from real-time simulation. Execution times are calculated from data recorded by
instrumentation probes added to the generated code. See Code Execution Profiling for more information.

1. Summary

Total time 249937177
Unit of time ns

report(, Units', 'seconds’, 'ScaleFactor, '1e-09',

Lo "NumericFormat', '%0.0f):
Timer frequency (ticks per second) 4.20001e+09
Profiling data created 13-Apr-2020 20:52:29

2. Profiled Sections of Code

Section Maximum Average Maximum Average Calls
Turnaround Turnaround Execution Time Execution Time
Time in ns Time in ns in ns in ns
[+] Modell R1[0.001 0] 36535 12427 36335 12427 2001 4 Ll
[+] Model? R1[0.001 0] 29099 13335 29099 13555 2003 4 Ll
[+] Modell R2[0.002 0] 108247 38432 108247 38432 1003 4 Ll
[+] Modell R3[0.003 0] 230666 73550 230666 73550 669 4 Ll
[-]1 Model? R3[0.003 0] 237935 98862 237935 98862 669 4 Ll
profiled_section 5 [Note 1] 235639 94498 235639 94498 667 4 Ll
[+] Modell R4[0.004 0] 87263 11897 87263 11897 309 4 Ll
[+] Model? R4[0.004 0] 164480 73342 164480 75342 304 4 Ll
Notes:

[1] Multiple entities in the model map to a single function in the generated code, as a result of code reuse. Click the entry 1n the Model column to highlight all
of the model entities. Browse through the model to identify all the highlighted entities.

3. Definitions

Execution Time: Time between start and end of code section, which excludes preemption time.

Turnaround Time: Time between start and end of code section, which includes preemption time.

Help

See Also
schedule | report | plot | ProfilerData | stopProfiler | startProfiler | resetProfiler |
getProfilerData | getAvailableProfile | deleteProfilerData

10-11

10 Tuning Performance

Related Examples
. “Concurrent Execution on Simulink Real-Time” on page 16-8

10-12

Reduce Build Time for Simulink Real-Time Referenced Models

Reduce Build Time for Simulink Real-Time Referenced Models

In a parallel computing environment, you can increase the speed of code generation and compilation
for models containing large model reference hierarchies. Achieve the speed by building referenced
models in parallel whenever conditions allow. For example, if you have Parallel Computing Toolbox
software, you can distribute code generation and compilation for each referenced model across the
cores of a multicore host computer. If you also have MATLAB Parallel Server™ software, you can
distribute code generation and compilation for each referenced model across remote workers in your
MATLAB Parallel Server configuration.

You can build referenced models in parallel on a compute cluster. In this way, you can more quickly
build and download real-time applications to the target computer.

For this procedure, you must have a functioning Simulink Real-Time installation on your development
computer.

1 Identify a set of worker computers, which can be separate cores on your development computer
or computers in a remote cluster running under Windows®.

2 Ifyou intend to use separate cores on the development computer, install Parallel Computing
Toolbox on the development computer.

3 Ifyou intend to use computers in a remote cluster:
a On each cluster computer, install:

« MATLAB

* Parallel Computing Toolbox

* MATLAB Parallel Server

¢ Simulink Real-Time

* Simulink Real-Time Target Support Package

b Start and configure the remote cluster according to the instructions at “Get Started with
MATLAB Parallel Server” (MATLAB Parallel Server).

4 Run MATLAB on the development computer.
In MATLAB, call the parpool function to open a parallel pool on the cluster.
6 To configure the compiler for the remote workers as a group, call the pctRunOnA1l1 function.

In this configuration, the development computer and the remote workers have installed a
supported version of a C++ compiler that is compatible with the code generation target. For the
current list of supported compilers, see Supported and Compatible Compilers.

7 From the top model of the model reference hierarchy, open the Configuration Parameters dialog
box. Go to the Model Referencing pane and select the Enable parallel model reference builds
option. This selection enables the parameter MATLAB worker initialization for builds. For more
information, see “Reduce Build Time for Referenced Models by Using Parallel Builds”.

8 Build and download your model.

See Also
parpool | pctRunOnAll

10-13

https://www.mathworks.com/support/requirements/supported-compilers.html

10 Tuning Performance

More About
. “Reduce Build Time for Referenced Models by Using Parallel Builds”

10-14

External Code Integration

+ “External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models”
on page 11-2

» “Hello World! Example External Code Integration for Simulink Real-Time” on page 11-6

11 External Code Integration

External Code Integration of Libraries and C/C++ Code with
Simulink Real-Time Models

11-2

In this section...

“Considerations for Integrating Third-Party Libraries and External Code into Simulink Real-Time” on
page 11-2

“Value of Upgrading Your C/C++ Code for Integration into Simulink Real-Time” on page 11-2
“Approaches for C/C++ Code Integration into Simulink Real-Time” on page 11-3

“Build Libraries from Source Code for Simulink Real-Time” on page 11-3

“External Code Integration for S-Functions and Simulink Real-Time” on page 11-4

“Additional C/C++ Project for Simulink Real-Time” on page 11-5

Considerations for Integrating Third-Party Libraries and External Code
into Simulink Real-Time

When integrating code into Simulink Real-Time applications, start by following the guidance in “Build
Integrated Code Within the Simulink Environment”. Developers who integrate C/C++ code with
Simulink Real-Time applications notice some differences when they migrate the code that they
integrated with Simulink Real-Time applications from previous releases to R2020b and later releases.
These differences include:

* Inrelease R2020a and previous releases, the On-Time RTOS on the target computer shared some
libraries and system calls with Windows. In release R2020b and later releases, the QNX Neutrino
RTOS on the target computer does not share libraries or system calls specific to Windows.

* Inrelease R2020a and previous releases, developers could use Microsoft® Visual Studio® to
compile libraries to integrate with Simulink Real-Time applications. In release R2020b and later
releases, you cannot use the Microsoft Visual Studio compiler for this purpose. You can configure
Microsoft Visual Studio to use the QNX Neutrino compiler from the Simulink Real-Time target
support package.

* In R2020b and later releases, developers use cross-compiling to produce libraries on their
development computer for deployment to their target computer.

Value of Upgrading Your C/C++ Code for Integration into Simulink
Real-Time

By updating your C/C++ code for integration into your Simulink Real-Time application, you gain
these benefits:
+ Leverage the QNX Neutrino 64-bit and POSIX® compatible RTOS.
* Code directly in C++ or wrap your legacy C code.
* Use the code editor of your choice.
For instance, customizing Visual Studio Code with the source files and shipped QCC compiler from
the Simulink Real-Time Target Support Package provides a similar experience to a full IDE.

» Leverage the precompiled QNX Neutrino libraries and headers that are included in Simulink Real-
Time to extend the functionality of your real-time application.

https://www.qnx.com/developers/docs/7.0.0/#com.qnx.doc.neutrino.utilities/topic/q/qcc.html

External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models

* Integrate any C/C++ application based on modern build and package software such as CMake.

Approaches for C/C++ Code Integration into Simulink Real-Time
There are advantages and disadvantages to each of these external code integration approaches.

Approach 1: Directly Call C/C++ Code. In this approach, you use C Caller or C Function blocks in the
model. For more information, see “Integrate External C/C++ Code Using C Function Blocks”.

* Advantages: There is no need to compile source code before building the model.

» Disadvantages: This approach is hard to use for complex projects that have many files and
dependencies. Also, in this approach you need to write a C wrapper in Simulink for C++ code. For
more information, see “Call C++ Class Methods Using a C-style Wrapper Function from a C
Function Block”.

Approach 2: Build, link, and use static libraries (. a files)

» Advantages: All required files are packed in the real-time application MLDATX file. In this
approach, there is no need to install libraries on the target. And, this approach lets you protect
your intellectual property.

* Disadvantages: This approach is non-modular. A change in the library requires rebuilding the
whole real-time application. Also, this approach tends to produce larger real-time application
MLDATX files.

Approach 3: Build, deploy and use shared objects (. so files)

* Advantages: This approach is modular. You can build the real-time application and shared object
independently. Also, this approach tends to produce smaller real-time application MLDATX files.
And this approach lets you protect your intellectual property.

» Disadvantages: In this approach, you need to access the target computer file system before
running the real-time application and install (copy) the shared objects to any of the common 1ib
paths on the target computers.

Build Libraries from Source Code for Simulink Real-Time

To integrate external code in a real-time application, the most flexible approaches are to build static
libraries or shared objects from source code.

* The library build workflow is similar to the workflow used by most developers for release R2020a
and previous releases. In those releases, the library build workflow for the target computer On-
Time RTOS produced static libraries built with Microsoft Visual Studio and produced . lib files.

* You achieve better usability when working with complex C++ projects that have many
dependencies and source code files.

» S-functions offer better granularity when handling third-party libraries in Simulink. S-functions
enable the flexibility to use the same S-function source code with different platforms, including
simulation on the desktop in different operating systems. The S-functions are deployed and
function in real-time on a target computer.

Cross-compiling is compiling a library for a target operating system (for example, QNX Neutrino

RTOS) on a development operating system (for example, Windows). Some cross-compiling
considerations for Simulink Real-Time are:

11-3

https://cmake.org/

11 External Code Integration

11-4

Choice of development environment. Many modern C++ projects use the CMake build
environment. For more information, see the CMake website.

Extensibility of development environment. For example, it is a common practice to extend most
common CMake support for the QNX Neutrino RTOS by leveraging similarities with the UNIX® OS
and its POSIX compatibility.

In your libraries, save cross-compiling libraries, including dependencies that might be already
included in the Simulink Real-Time Target Support Package. These libraries can be linked to other
C++ projects.

The suggested workflow for integration of complex C++ applications into Simulink Real-Time is:

1

Start from a C++ project with CMake as the build environment.
Set the dependencies, such as headers and libraries, in your Simulink model.

On the development computer, cross-compile libraries for the QNX Neutrino RTOS on the target
computer.

Create an S-function, for instance using the S-function Builder block or a handwritten C-MEX S-
function, as the main function that calls the C++ functions defined in the header files and
implemented in the compiled libraries for the QNX Neutrino RTOS.

Build the real-time application.

By using SSH or FTP, copy your cross-compiled libraries to a location on the target computer
where they can be found and loaded at run time. The recommended locations are /1ib, /usr/
lib, or /usr/local/lib.

Load and run the real-time application.

External Code Integration for S-Functions and Simulink Real-Time

When you include static libraries or shared objects in S-functions for external code integration with a
real-time application, there are some tips for your development.

When building from Simulink:

Use rtwmakecfg.m and makeInfo object to map libraries and header files. For more information,
see “Use rtwmakecfg.m API to Customize Generated Makefiles”.

function makeInfo = rtwmakecfg
proj = currentProject;
rootPath = proj.RootFolder;
makeInfo.linkLibsObjs = {};
sysTarget = get param(bdroot, 'RTWSystemTargetFile');
switch sysTarget
case 'slrealtime.tlc’

makeInfo.includePath = '<includePath>"';
makeInfo.linkLibsObjs{end+1} = '<libraryPath>";
otherwise
error('No rtwmakecfg found for %s target file', sysTarget);
end
end

Enable linking for different target files.

Use macros, such as SIMULINK REAL TIME, in your source code to add lines at compile time for
real-time simulation. SIMULINK REAL TIME is useful to wrap the LOG function calls.

https://cmake.org/

External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models

When cross-compiling, use macros such as _unix and QNXNTO in your source code to add
lines at compile time.

Additional C/C++ Project for Simulink Real-Time

The eCAL Toolbox for Simulink project on github.com/mathworks/ecal-toolbox shows complete
external code integration with Simulink Real-Time, including S-function wrappers, rtwmakecfg
customization, and shared object compilation. You also can simulate this example on your
development computer.

See Also

More About

. “Build Support for S-Functions”

. “Compile Source Code for Functional Mock-up Units” on page 3-3

. “Troubleshoot Model Links to Static Libraries or Shared Objects” on page 17-25
. “Troubleshoot Cannot Load Shared Object on Target Computer” on page 17-14

External Websites
. MathWorks Help Center website
. CMake website

11-5

https://github.com/mathworks/ecal-toolbox/
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://cmake.org/

11 External Code Integration

Hello World! Example External Code Integration for Simulink
Real-Time

11-6

This example shows how to use an S-Function Builder block for external code integration. The
example adds a hello message to the system log.

Before running this example, install the Simulink Real-Time Target Support Package. The support
package includes the tools that compile the code that runs on the target computer.

Open the Model
Use the Open Model button to open the slrt _ex helloworld sfunbuilder model.

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples','slrt _ex helloworld sfunbuilde

L

12:34 (L0 helloworld_sfun i

[1

Y

Model sirt_ex_helloword_sfunbuilder

Simulink Real-Time example model

Copyright 2021 The MathWorks, Inc.

Open the S-Function Block

Double-click the helloworld-sfun S-Function block. The S-Function Builder opens and displays the
S-function code.

/* Includes BEGIN */
#ifdef SIMULINK REAL TIME
#include "slrt log.hpp"
#endif

/* Includes END */

/* Externs BEGIN */
/* extern double func(double a); */
/* Externs END */

void helloworld sfun Start wrapper(SimStruct *S)

{
/* Start BEGIN */

/* Start END */
¥

void helloworld sfun Outputs wrapper(const real T *u0,
real T *yo0,
SimStruct *S)

Hello World! Example External Code Integration for Simulink Real-Time

{

/* Output BEGIN */

// Create custom message

static char hellomsg[100];
sprintf(hellomsg, "Hello World! t=%f \n",*u0);
// Use macros for platform dependent code
#ifdef SIMULINK REAL TIME

slrealtime::log info(hellomsg);

#else

ssPrintf(hellomsg);

#endif

// Generic platform independent code
*y0 = *u0;

/* Output END */

}

void helloworld sfun Terminate wrapper(SimStruct *S)

{
/* Terminate BEGIN */

/*

* Custom Terminate code goes here.
*/

/* Terminate END */

}

Build Model and Run Real-Time Application

Before building the model, you can run the model on your desktop and view the output message in
the Simulink Real-Time system log viewer.

When you are ready to build the model, on the Simulink Editor Real-Time tab, connect to the target
computer and click Run on Target. Or, in the MATLAB Command Window, type:

tg = slrealtime;

connect(tg);

model = 'slrt ex helloworld sfunbuilder';
evalc('slbuild(model)"');

load(tg,model);

start(tg);

pause(20);

stop(tg);

View Message in Status Log

Open the target computer status log and view the Hello World! message. On the Simulink Editor
Real-Time tab, select Prepare > SLRT Explorer. Then, select the System Log Viewer tab. Or, in
the MATLAB Command Window, type:

slrtLogViewer;

The viewer shows the Hello World! messages in the system log.

11-7

11 External Code Integration

Timestamp

25-06-2021 22:22:15_.
25-06-2021 22:22:15_.
25-06-2021 22:22:17 .
25-06-2021 22:22:34
25-06-2021 22:22:34
27-06-2021 21:22:33_ .
27-06-2021 21:22:33
27-06-2021 21:22:40_.
27-06-2021 21:22:41_
27-06-2021 21:22:42 .
27-06-2021 21:22:43
27-06-2021 21:22:44_ .
27-06-2021 21:22:45
27-06-2021 21:22:46._
27-06-2021 21:22:47 ...
27-06-2021 21:22:48
27-06-2021 21:22:49_
27-06-2021 21:22:50...
27-06-2021 21:22:51_
27-06-2021 21:22:51_.
27-06-2021 21:22:51_

Message

Loading model lamp

Ready to start

Startimg model lamp

TET 0 avg: 1.467e-06 min: 1.301e-06 max: 2.209e-06
Stopping model lamp at 17s
Loading model helloworld

Feady to start

Startimg model helloworld

Hello World! t=0.000000

Hello World! t=1.000000

Hello World! t=2 000000

Hello World! t=3.000000

Hello World! t=4 000000

Hello World! t=5.000000

Hello World! t=6.000000

Hello World! t=7_ 000000

Hello World! t=8.000000

Hello World! t=5.000000

Hello World! t=10.000000
Stopping model helloworld at 10s
TET 0 avg: 2.8876e-05 min: 2.7718e-05 max: 5.3294e-05

Close All Files

bdclose('all');

11-8

Se...

info
info
info
info
info
info
info
info
info
info
info
info
info
info
info
info
info
info
info
info
info

Cateq...

ol o o o oo oo

100
100
100
100
100
100
100
100
100
100
100

Simulation Data Inspector

* “View Data in the Simulation Data Inspector” on page 12-2

* “Import Data from a CSV File into the Simulation Data Inspector” on page 12-11
* “Microsoft Excel Import, Export, and Logging Format” on page 12-15

* “Configure the Simulation Data Inspector” on page 12-23

* “How the Simulation Data Inspector Compares Data” on page 12-31

* “Save and Share Simulation Data Inspector Data and Views” on page 12-36

* “Inspect and Compare Data Programmatically” on page 12-42

* “Limit the Size of Logged Data” on page 12-48

12 Ssimulation Data Inspector

View Data in the Simulation Data Inspector

12-2

You can use the Simulation Data Inspector to visualize the data you generate throughout the design
process. Simulation data that you log in a Simulink model logs to the Simulation Data inspector. You
can also import test data and other recorded data into the Simulation Data Inspector to inspect and
analyze it alongside the logged simulation data. The Simulation Data Inspector offers several types of
plots, which allow you to easily create complex visualizations of your data.

View Logged Data

Logged signals as well as outputs and states logged using the Dataset format automatically log to
the Simulation Data Inspector when you simulate a model. You can also record other kinds of
simulation data so the data appears in the Simulation Data Inspector at the end of the simulation. To
see states and output data logged using a format other than Dataset in the Simulation Data
Inspector, open the Configuration Parameters dialog box and, in the Data Import/Export pane,
select the Record logged workspace data in Simulation Data Inspector parameter.

Note When you log states and outputs using the Structure or Array format, you must also log
time for the data to record to the Simulation Data Inspector.

The Simulation Data Inspector displays available data in the table in the Inspect pane. To plot a
signal, select the check box next to the signal. You can modify the layout and add different
visualizations to analyze the simulation data. For more information, see “Create Plots Using the
Simulation Data Inspector”.

View Data in the Simulation Data Inspector

Q8 BPH[fDR +

Q @ r

Inspact Lomaane W alpha, rad W alpha, rad

- Run &

-

Archive (1

= Run 1: shexAlrcrafiExample @

q,ra

R

Proparties

q, rad/sac
alpha, rad

Stk

slexAircraftExample

dlsar e

The Simulation Data Inspector manages incoming simulation data using the archive. By default, the
previous run moves to the archive when you start a new simulation. You can plot signals from the
archive, or you can drag runs of interest back into the work area.

Import Data from the Workspace or a File

You can import data from the base workspace or from a file to view on its own or alongside simulation
data. The Simulation Data Inspector supports all built-in data types and many data formats for
importing data from the workspace. In general, whatever the format, sample values must be paired
with sample times. The Simulation Data Inspector allows up to 8000 channels per signal in a run
created from imported workspace data.

You can also import data from these types of files:

+ MAT file

* (CSV file — Format data as shown in “Import Data from a CSV File into the Simulation Data
Inspector”.

* Microsoft Excel® file — Format data as described in “Microsoft Excel Import, Export, and Logging
Format”.

12-3

12 Ssimulation Data Inspector

12-4

* MDF file — MDF file import is supported for Linux® and Windows operating systems. The MDF file
must have a .mdf, .mf4, .mf3, .data, or .dat file extension and contain data with only integer
and floating data types.

* ULG file — Flight log data import requires a UAV Toolbox license.

To import data from the workspace or from a file that is saved in a data or file format that the
Simulation Data Inspector does not support, you can write your own workspace data or file reader to
import the data using the io. reader class. You can also write a custom reader to use instead of the
built-in reader for supported file types. For examples, see:

* “Import Data Using a Custom File Reader”
* “Import Workspace Variables Using a Custom Data Reader”

g

To import data, select the Import button in the Simulation Data Inspector. St

In the Import dialog, you can choose to import data from the workspace or from a file. The table
below the options shows data available for import. If you do not see your workspace variable or file
contents in the table, that means the Simulation Data Inspector does not have a built-in or registered
reader that supports that data. You can select which data to import using the check boxes, and you
can choose whether to import that data into an existing run or a new run. To select all or none of the
data, use the check box next to NAME.

View Data in the Simulation Data Inspector

Import ? X

{mpart time senes data from the base workspace or a file

Import from: ® Base workspace

File
To: ® New run
Existing run
MAME
B omoownoms
Fn
Tin
+ LockedFlag
+ LockupFlag
+ UnlockFlag
Timaxk
Timaxs
g ShaftSpeed

|E| m| Cancel |

e

When you import data into a new run, the run always appears in the work area. You can manually
move imported runs to the archive.

View Complex Data

To view complex data in the Simulation Data Inspector, import the data or log the signals to the
Simulation Data Inspector. You can control how to visualize the complex signal using the Properties
pane in the Simulation Data Inspector and in the Instrumentation Properties for the signal in the
model. To access the Instrumentation Properties for a signal, right-click the logging badge for the
signal and select Properties.

You can specify the Complex Format as Magnitude, Magnitude-Phase, Phase, or Real-Imaginary. If
you select Magnitude-Phase or Real-Imaginary for the Complex Format, the Simulation Data
Inspector plots both components of the signal when you select the check box for the signal. For
signals in Real-Imaginary format, the Line Color specifies the color of the real component of the
signal, and the imaginary component is a different shade of the Line Color. For example, the

12-5

12 simulation Data Inspector

Complex Signal displays the real component of the signal in light blue, matching the Line Color
parameter, and the imaginary component is shown in a darker shade of blue.

Q @ ' Iy
Insgact Comparne m Complex Signal
!
. + Complax Signal — 2 |
| ! |
d | |
12 |
y ;
—
ey |
- I
08 !
| |
I
i
[[
Archive
Proparties 8 1 P 3 3 H 5 T i 1

For signals in Magnitude-Phase format, the Line Color specifies the color of the magnitude
component, and the phase is displayed in a different shade of the Line Color.

View String Data
You can log and view string data with your signal data in the Simulation Data Inspector. For example,

consider this simple model. The value of the sine wave block controls whether the switch sends a
string reading Positive or Negative to the output.

12-6

View Data in the Simulation Data Inspector

Q& m®NH [@

"Positive"

J’"'lu

"Megative”

—P
(FRe

The plot shows the results of simulating the model. The string signal is shown at the bottom of the
graphical viewing area. The value of the signal is displayed inside a band, and transitions in the string
signal's value are marked with criss-crossed lines.

Q & H 1S
I T
=y — . P

f L r |
| ,]'-)
J] 11 _ |
| | I
| I
. I g
) L f !
! ! |
A% _Il]
! ‘JJH
1
Archive " ":| Positive Negative . Positive: & |

You can use cursors to inspect how the string signal values correspond with the sine signal's values.

12-7

12 Ssimulation Data Inspector

|l Sine Waver1
[+ Swichl

@8 LD

|.ﬂ.rthi\'q o

|F—’rnp-0|r.ieg

When you plot multiple string signals on a plot, the signals stack in the order they were simulated or

W Sina Wave:1 ® Swich

28

AQ

| Positre

ezl

[Fosite |

| Megatve

=

/

2

| 27 |

H

L

]

3

imported, with the most recent signal positioned at the top. For example, you might consider the
effect of changing the phase of the sine wave controlling the switch.

12-8

View Data in the Simulation Data Inspector

O PLFODOR +

Q @ L3
Inspect Lompane W Sine Wave 1 B Swach1 W Sine Wave 1 ® Switch 1
Run # StringExample(Cuarment] i
}
o Tine Wawe 1 —
v Switch -
o4
24
Posfne Hegatre | A Positae Negative
a by——F 1
4.0 Positrre Hegatie 2 Posine L]
Archboa (1) | 1
Proparties 3 [.]

View Frame-Based Data

Processing data in frames rather than point by point provides a performance boost needed in some
applications. To view frame-based data in the Simulation Data Inspector, you have to specify that the
signal is frame-based in the Instrumentation Properties for the signal. To access the
Instrumentation Properties dialog for a signal, right-click the signal's logging badge and select
Properties. To specify a signal as frame-based, select Columns as channels (frame based) for
Input processing.

View Event-Based Data
You can log or import event data to the Simulation Data Inspector. To view the logged event-based

data, select the check box next to Send: 1. The Simulation Data Inspector displays the data as a
stem plot, with each stem representing the number of events that occurred for a given sample time.

12-9

12 Ssimulation Data Inspector

Q @ ® |3 B ¢
Inspact Compare m Send-1
Fiier Signals
= Run 1; SimpleMessagesModel{Current) [I
. Recahve: 1

Sine Wave:1

g D

Cuaue

@8 M®LH [«

Archivi

Propaerties

12-10

— o8

-

See Also

More About

.

Inspect Simulation Data

Compare Simulation Data

Share Simulation Data Inspector Data and Views on page 12-36
Decide How to Visualize Data

Dataset Conversion for Logged Data

Import Data from a CSV File into the Simulation Data Inspector

Import Data from a CSV File into the Simulation Data Inspector

To import data into the Simulation Data Inspector from a CSV file, format the data in the CSV file.
Then, you can import the data using the Simulation Data Inspector UI or the
Simulink.sdi.createRun function.

Tip When you want to import data from a CSV file where the data is formatted differently from the
specification in this topic, you can write your own file reader for the Simulation Data Inspector using
the i0. reader class.

Basic File Format

In the simplest format, the first row in the CSV file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

| myData - Notepad — O x

File Edit Format WView Help
time,signall,signal?,signal3l

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values render as missing data. All built-in data types are
supported.

Multiple Time Vectors

When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signall
and signal2, and the second time column defines the time steps for signal3.

12-11

12 Ssimulation Data Inspector

12-12

| myData - Notepad — O *

File Edit Format View Help
time,signall,signal?,time,signal3
e,1,1,8,4

Signal columns must have the same number of data points as the associated time vector.

Signal Metadata

You can specify signal metadata in the CSV file to indicate the signal data type, units, interpolation
method, block path, and port index. List metadata for each signal in rows between the signal name
and the signal data. Label metadata according to this table.

Signal Property Label Value
Data type Type: Built-in data type.
Units Unit: Supported unit. For example,

Unit: m/s specifies units of
meters per second.

For a list of supported units,
enter showunitslist in the
MATLAB Command Window.

Interpolation method Interp: linear, zoh for zero order
hold, or none.

Block Path BlockPath: Path to the block that generated
the signal.

Port Index PortIndex: Integer.

You can also import a signal with a data type defined by an enumeration class. Instead of using the
Type: label, use the Enum: label and specify the value as the name of the enumeration class. The
definition for the enumeration class must be saved on the MATLAB path.

When an imported file does not specify signal metadata, the Simulation Data Inspector assumes
double data type and linear interpolation. You can specify the interpolation method as linear, zoh
(zero-order hold), or none. If you do not specify units for the signals in your file, you can assign units
to the signals in the Simulation Data Inspector after you import the file.

You can specify any combination of metadata for each signal. Leave a blank cell for signals with less
specified metadata.

Import Data from a CSV File into the Simulation Data Inspector

mj rmyData - Motepad

File Edit Format View Help

time,signall,signal?,time,signal3
,Interp: zoh, , ,Interp: zoh
;Iype: intd,Type: int32

S

,Unit: m, , ,Unit: m/s
@,1,1,8,4
1,2,4,2,8
2,3,9,3,15
3,3,9,5,16
3,4,16
ﬁ 5,25

Import Data from a CSV File

You can import data from a CSV file using the Simulation Data Inspector UI or using the

Simulink.sdi.createRun function.

To import data using the Ul, open the Simulation Data Inspector using the Simulink.sdi.view

function or the Data Inspector button in the Simulink™ toolstrip. Then, click Import e

In the Import dialog, select the option to import data from a file and navigate in the file system to
select the file. After you select the file, data available for import shows in the table. You can choose
which signals to import and whether to import them to a new or existing run. This example imports
all available signals to a new run. To select all or none of the signals, select or clear the check box
next to NAME. After selecting the options, click the Import button.

12-13

12 Ssimulation Data Inspector

Import ? X

Import lime senies dala from the base warkspace or a file

Import from: Base workspace
® File csvExampleData.csv W -
To: ® New run
Existing run
| MAME

o Squaresig
o linesig

? m I Cancel .

When you import data into a new run using the UI, the new run name includes the run number
followed by Imported Data.

When you import data programmatically, you can specify the name of the imported run.

csVRunID = Simulink.sdi.createRun('CSV File Run','file', 'csvExampleData.csv');

See Also

Functions
Simulink.sdi.createRun

More About

. “View Data in the Simulation Data Inspector”

. “Microsoft Excel Import, Export, and Logging Format”
. “Import Data Using a Custom File Reader”

12-14

Microsoft Excel Import, Export, and Logging Format

Microsoft Excel Import, Export, and Logging Format

Using the Simulation Data Inspector or Simulink Test, you can import data from a Microsoft Excel file
or export data to a Microsoft Excel file. You can also log data to an Excel file using the Record block.
The Simulation Data Inspector, Simulink Test, and the Record block all use the same file format, so
you can use the same Microsoft Excel file with multiple applications.

Tip When the format of the data in your Excel file does not match the specification in this topic, you
can write your own file reader to import the data using the io. reader class.

Basic File Format

In the simplest format, the first row in the Excel file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

A E C D

1 [time signall signal2 signal3

2 1] 1 1 4
3 1 2 4 a8
4 2 3 9 15
] 3 3 9 16
& 3 4 16 23
¥ 4] 25 42

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values imported from the Excel file render as missing data
in the Simulation Data Inspector. All built-in data types are supported.

Multiple Time Vectors

When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signall
and signal2, and the second time column defines the time steps for signal3.

A E C D E

1 time signall signal2 time signal3

2 0 1 1 0 4
2 1 2 4 2 a8
4 2 3 9 3 15
3 3 3 9 5 16
& 3 4 16

I 4 5 25

12-15

12 Ssimulation Data Inspector

12-16

Signal columns must have the same number of data points as the associated time vector.

Signal Metadata

The file can include metadata for signals such as data type, units, and interpolation method. The
metadata is used to determine how to plot the data, how to apply unit and data conversions, and how
to compute comparison results. For more information about how metadata is used in comparisons,
see “How the Simulation Data Inspector Compares Data”.

Metadata for each signal is listed in rows between the signal names and the signal data. You can
specify any combination of metadata for each signal. Leave a blank cell for signals with less specified
metadata.

A B C D E

1 time signall signal2 time signal3

2 Interp: zoh Interp: zoh
2 Type:int8 Type:int32

4 Unit: m Unit: m/s

3 1] 1 1 0 4
& 1 2 4 2 a8
ri 2 3 9 3 15
8 3 3 9 5 16
g 3 4 16
10 4 5 25

Label each piece of metadata according to this table. The table also indicates which tools and
operations support each piece of metadata. When an imported file does not specify signal metadata,
double data type, Linear interpolation, and union synchronization are used.

Microsoft Excel Import, Export, and Logging Format

Property Descriptions

Signal Label Values Simulation Record Block |[Simulink Test
Property Data Inspector|Logging and |Import and
Import Simulation Export
Data Inspector
Export
Data type Type: Built-in data Supported Supported Supported
type.
Units Unit: Supported unit. |Supported Supported Supported
For example,
Unit: m/s
specifies units
of meters per
second.
For a list of
supported units,
enter
showunitslis
t in the
MATLAB
Command
Window.
Interpolation Interp: linear, zoh Supported Supported Supported
method for zero order
hold, or none.
Synchronization |Sync: union or Supported Not Supported |Supported
method intersection
Metadata not
included in
exported file.
Relative RelTol: Percentage, Supported Not Supported |Supported
tolerance represented as
a decimal. For Metadata not
example’ included in
RelTol: 0.1 exported file.
specifies a 10%
relative
tolerance.
Absolute AbsTol: Numeric value. |Supported Not Supported |Supported
tolerance
Metadata not
included in
exported file.
Time tolerance |[TimeTol: Numeric value, |Supported Not Supported |Supported
in seconds.
Metadata not
included in
exported file.

12-17

12 Ssimulation Data Inspector

12-18

Signal Label Values Simulation Record Block |[Simulink Test
Property Data Inspector|Logging and |Import and
Import Simulation Export
Data Inspector
Export
Leading LeadingTol: |Numeric value, |Supported Not Supported |Supported
tolerance in seconds.
Only visible in |Metadata not
Simulink Test. |included in
exported file.
Lagging LaggingTol: |Numeric Value, |Supported Not Supported | Supported
tolerance in seconds.
Only visible in |Metadata not
Simulink Test. |included in
exported file.
Block Path BlockPath: Path to the Supported Supported Supported
block that
generated the
signal.
Port Index PortIndex: Integer. Supported Supported Supported
Name Name: Signal name Supported Not Supported |Supported
Metadata not
included in
exported file.

User-Defined Data Types

In addition to built-in data types, you can use other labels in place of the DataType: label to specify
fixed-point, enumerated, alias, and bus data types.

Microsoft Excel Import, Export, and Logging Format

Property Descriptions

Data Type Label Values Simulation Record Block |[Simulink Test
Data Inspector|Logging and |Import and
Import Simulation Export
Data Inspector
Export
Enumeration Enum: Name of the Supported Supported Supported
enumeration
class. Enumeration Enumeration Enumeration
class definition |class definition |class definition
must be saved |must be saved |must be saved
on the MATLAB |on the MATLAB |on the MATLAB
path. path. path.
Alias Alias: Name of a Supported Not Supported |Supported
Simulink.Ali
asType object |For matrix and For matrix and
in the MATLAB |complex complex
workspace. signals, specify signals, specify
the alias data the alias data
type on the first type on the first
channel. channel.
Fixed-point Fixdt: o fixdt Supported Not Supported |Supported
constructor.
* Name of a
Simulink.
NumericTy
pe object in
the MATLAB
workspace.
* Name of a
fixed-point
data type as
described in
“Fixed-Point
Numbers in
Simulink”
(Fixed-Point
Designer).
Bus Bus: Name of a Supported Not Supported |Supported
Simulink.Bus
object in the
MATLAB
workspace.

When you specify the type using the name of a Simulink.Bus object and the object is not in the
MATLAB workspace, the data still imports from the file. However, individual signals in the bus use
data types described in the file rather than data types defined in the Simulink.Bus object.

12-19

12 Ssimulation Data Inspector

Complex, Multidimensional, and Bus Signals

You can import and export complex, multidimensional, and bus signals using an Excel file. The signal
name for a column of data indicates whether that data is part of a complex, multidimensional, or bus
signal. Excel file import and export do not support array of bus signals.

Note When you export data from a nonvirtual bus with variable-size signals to an Excel file, the
variable-size signal data is expanded to individual channels, and the hierarchical nature of the data is
lost. Data imported from this file is returned as a flat list.

Multidimensional signal names include index information in parentheses. For example, the signal
name for a column might be signall(2,3). When you import data from a file that includes
multidimensional signal data, elements in the data not included in the file take zero sample values
with the same data type and complexity as the other elements.

Complex signal data is always in real-imaginary format. Signal names for columns containing complex
signal data include (real) and (imag) to indicate which data each column contains. When you
import data from a file that includes imaginary signal data without specifying values for the real
component of that signal, the signal values for the real component default to zero.

Multidimensional signals can contain complex data. The signal name includes the indication for the
index within the multidimensional signal and the real or imaginary tag. For example, signall(1,3)
(real).

Dots in signal names specify the hierarchy for bus signals. For example:

* bus.y.a

* bus.y.b

* bus.x

A B C D E

1 time bus.y.a bus.y.b time bus.x

2 Interp: zoh Interp: zoh

2 Type: intd Type: int32

4 Unit: m Unit: m/s

3] 1 1] 4
& 1 2 4 2 a8
ri 2 3 9 3 15
8 3 3 9 5 16
g 3 4 16

10 4 5 25

Tip When the name of your signal includes characters that could make it appear as though it were
part of a matrix, complex signal, or bus, use the Name metadata option to specify the name you want
the imported signal to use in the Simulation Data Inspector and Simulink Test.

12-20

Microsoft Excel Import, Export, and Logging Format

Function-Call Signals

Signal data specified in columns before the first time column is imported as one or more function-call
signals. The data in the column specifies the times at which the function-call signal was enabled. The
imported signals have a value of 1 for the times specified in the column. The time values for function-
call signals must be double, scalar, and real, and must increase monotonically.

When you export data from the Simulation Data Inspector, function-call signals are formatted the
same as other signals, with a time column and a column for signal values.

Simulation Parameters

You can import data for parameter values used in simulation. In the Simulation Data Inspector, the
parameter values are shown as signals. Simulink Test uses imported parameter values to specify
values for those parameters in the tests it runs based on imported data.

Parameter data is specified using two or three columns. The first column specifies the parameter
names, with the cell in the header row for that column labeled Parameter:. The second column
specifies the value used for each parameter, with the cell in the header row labeled Value:.
Parameter data may also include a third column that contains the block path associated with each
parameter, with the cell in the header row labeled BlockPath:. Specify names, values, and block
paths for parameters starting in the first row that contains signal data, below rows used to specify
signal metadata. For example, this file specifies values for two parameters, X and Y.

A B C D E F G
1 time signall signal2 time signal3 Parameter: Value:
Z Interp: zoh Interp: zoh
2 Type: int8 Type:int32
4 Unit: m Unit: m/s
] 0 1 1 0 4 X 2
& 1 2 4 2 8y 1.2
7 2 3 9 3 15
8 3 3 9 5 16
a 3 4 16
10 4 5 25

Multiple Runs

You can include data for multiple runs in a single file. Within a sheet, you can divide data into runs by
labeling data with a simulation number and a source type, such as Input or Output. Specify the
simulation number and source type as additional signal metadata, using the label Simulation: for
the simulation number and the label Source: for the source type. The Simulation Data Inspector
uses the simulation number and source type only to determine which signals belong in each run.
Simulink Test uses the information to define inputs, parameters, and acceptance criteria for tests to
run based on imported data.

You do not need to specify the simulation number and output type for every signal. Signals to the
right of a signal with a simulation number and source use the same simulation number and source

12-21

12 Ssimulation Data Inspector

12-22

until the next signal with a different source or simulation number. For example, this file defines data
for two simulations and imports into four runs in the Simulation Data Inspector:

* Run 1 contains signall and signal2.

* Run 2 contains signal3, X, and Y.

* Run 3 contains signal4.

* Run 4 contains signalb5.

B & D E F G H | J

signall signal2 time signal3 Parameter: Values: time signal4 signals

Interp: zoh Interp: zoh

Type: intd Type: int32

Unit: m Unit: m/s

Simulation: 1 Simulation: 2

Source: Input Source: Output Source: Input Source: Qutput
0 1 1 0 4 X 2 1 2 1
1 2 4 2 8Y 1.2 2 6 3
2 3 9 3 15 3 4 5
3 3 9 3 16 4 8 7
3 4 16 5 10 2
4 5 25

You can also use sheets within the Microsoft Excel file to divide the data into runs and tests. When
you do not specify simulation number and source information, the data on each sheet is imported into
a separate run in the Simulation Data Inspector. When you export multiple runs from the Simulation
Data Inspector, the data for each run is saved on a separate sheet. When you import a Microsoft Excel
file that contains data on multiple sheets into Simulink Test, you are prompted to specify how to
import the data.

See Also
Simulink.sdi.createRun | Simulink.sdi.exportRun

More About

. “View Data in the Simulation Data Inspector”

. “Import Data from a CSV File into the Simulation Data Inspector”
. “Import Data Using a Custom File Reader”

Configure the Simulation Data Inspector

Configure the Simulation Data Inspector

The Simulation Data Inspector supports a wide range of use cases for analyzing and visualizing data.
You can modify preferences in the Simulation Data Inspector to match your visualization and analysis
requirements. The preferences that you specify persist between MATLAB sessions.

By specifying preferences in the Simulation Data Inspector, you can configure options such as:

* How signals and metadata are displayed.

* Which data automatically imports from parallel simulations.

* Where prior run data is retained and how much prior data to store.
* How much memory is used during save operations.

* The system of units used to display signals.

o

Note You can restore all preferences in the Simulation Data Inspector to default values by clicking
Restore Defaults in the Preferences menu or by using the Simulink.sdi.clearPreferences
function.

To open the Simulation Data Inspector preferences, click Preferences.

Logged Data Size and Location

By default, simulation data logs to disk with data loaded into memory on demand, and the maximum
size of logged data is constrained only by available disk space. You can use the Disk Management
settings in the Simulation Data Inspector to directly control the size and location of logged data.

The Record mode setting specifies whether logged data is retained after simulation. When you
change the Record mode setting to View during simulation only, no logged data is available in the
Simulation Data Inspector or the workspace after the simulation completes. Only use this mode when
you do not want to save logged data. The Record mode setting reverts to View and record data
each time you start MATLAB. Changing the Record mode setting can affect other applications, such
as visualization tools. For details, see “View Data Only During Simulation”.

To directly limit the size of logged data, you can specify a minimum amount of free disk space or a
maximum size for the logged data. By default, logged data must leave at least 100 MB of free disk
space with no maximum size limit. Specify the required disk space and maximum size in GB, and
specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes
retaining data for the current run by deleting data for prior runs. To prioritize retaining prior data,
change the When low on disk space setting to Keep prior runs and stop recording. You see a
warning message when prior runs are deleted and when recording is disabled. If recording is
disabled due to the size of logged data, you need to change the Record Mode back to View and

12-23

12 Ssimulation Data Inspector

record data to continue logging data, after you have freed up disk space. For more information, see
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data”.

The Storage Mode setting specifies whether to log data to disk or to memory. By default, data logs to
disk. When you configure a parallel worker to log data to memory, data transfer back to the host is
not supported. Logging data to memory is not supported for rapid accelerator simulations or models
deployed using Simulink Compiler™.

You can also specify the location of the temporary file that stores logged data. By default, data logs to
the temporary files directory on your computer. You may change the file location when you need to
log large amounts of data and a secondary drive provides more storage capacity. Logging data to a
network location can degrade performance.

Programmatic Use

You can programmatically configure and check each preference value.

Preference Functions

Record mode Simulink.sdi.setRecordData

Simulink.sdi.getRecordData

Required Free Space Simulink.sdi.setRequiredFreeSpace

Simulink.sdi.getRequiredFreeSpace

Max Disk Usage Simulink.sdi.setMaxDiskUsage

Simulink.sdi.getMaxDiskUsage

When low on disk space Simulink.sdi.setDeleteRunsOnLowSpace

Simulink.sdi.getDeleteRunsOnLowSpace

Storage Mode Simulink.sdi.setStorageMode

Simulink.sdi.getStorageMode

Storage Location Simulink.sdi.setStoragelLocation

Simulink.sdi.getStoragelLocation

Archive Behavior and Run Limit

When you run multiple simulations in a single MATLAB session, the Simulation Data Inspector retains
results from each simulation so you can analyze the results together. Use the Simulation Data
Inspector archive to manage runs in the user interface and control the number of runs the Simulation
Data Inspector retains.

You can configure a limit for the number of runs to retain in the archive and whether the Simulation
Data Inspector automatically moves prior runs into the archive.

12-24

Configure the Simulation Data Inspector

Manage Runs Using the Archive

By default, the Simulation Data Inspector automatically archives simulation runs. When you simulate
a model, the prior simulation run moves to the archive, and the Simulation Data Inspector updates
the view to show data for aligned signals in the current run.

The archive does not impose functional limitations on the runs and signals it contains. You can plot
signals from the archive, and you can use runs and signals in the archive in comparisons. You can
drag runs of interest from the archive to the work area and vice versa whether Automatically
Archive is selected or disabled.

To prevent the Simulation Data Inspector from automatically moving prior simulations runs to the
archive, clear the Automatically archive setting. With automatic archiving disabled, the Simulation
Data Inspector does not move prior runs into the Archive pane or automatically update plots to
display data from the current simulation.

Tip To manually delete the contents of the archive, click Delete archived runs

Control Number of Runs Retained in Simulation Data Inspector

You can specify a limit for the number of runs to retain in the archive. When the number of runs in
the archive reaches the limit, the Simulation Data Inspector deletes runs in the archive on a first-in,
first-out basis.

The run limit applies only to runs in the archive. For the Simulation Data Inspector to automatically
limit the data it retains by deleting old runs, select Automatically archive and specify a size limit.

By default, the Simulation Data Inspector retains the last 20 runs moved to the archive. To remove
the limit, select No limit. To specify the maximum number of runs to store in the archive, select Last
n runs and enter the limit. A warning occurs if you specify a limit that would delete runs already in
the archive.

Programmatic Use

You can programmatically configure and check the archive behavior and run limit.

Preference Functions
Automatically archive Simulink.sdi.setAutoArchiveMode

Simulink.sdi.getAutoArchiveMode

Size Simulink.sdi.setArchiveRunLimit

Simulink.sdi.getArchiveRunLimit

Incoming Run Names and Location

You can configure how the Simulation Data Inspector handles incoming runs from import or
simulation. You can choose whether new runs are added at the top of the work area or the bottom and
specify a naming rule to use for runs created from simulation.

12-25

12 simulation Data Inspector

12-26

By default, the Simulation Data Inspector adds new runs below prior runs in the work area. The
Archive settings also affect the location of runs. By default, prior runs are moved to the archive when
a new simulation run is created.

The run naming rule is used to name runs created from simulation. You can create the run naming
rule using a mix of literal text that is used in the run name as-is and one or more tokens that
represent metadata about the run. By default, the Simulation Data Inspector names runs using the
run index and model name: Run <run_index>: <model name>.

Tip To rename an existing run, double-click the name in the work area and enter the new name, or
modify the run name in the Properties pane.

Programmatic Use

You can programmatically configure and check incoming run names and locations.

Preference Functions
Add New Runs Simulink.sdi.setAppendRunToTop

Simulink.sdi.getAppendRunToTop
Naming Rule Simulink.sdi.setRunNamingRule

Simulink.sdi.getRunNamingRule

Simulink.sdi.resetRunNamingRule

Signal Metadata to Display

You can control which signal metadata is displayed in the work area of the Inspect pane and in the
results section on the Compare pane in the Simulation Data Inspector. You specify the metadata to
display separately for each pane using the Table Columns preferences in the Inspect and Compare
sections of the Preferences dialog, respectively.

Inspect Pane

By default, the signal name and the line style and color used to plot the signal are displayed on the
Inspect pane. To display different or additional metadata in the work area on the Inspect pane,
select the check box next to each piece of metadata you want to display in the Table Columns
preference in the Inspect section. You can always view complete metadata for the selected signal in
the Inspect pane using the Properties pane.

Note Metadata displayed in the work area on Inspect pane is included when you generate a report
of plotted signals. You can also specify metadata to include in the report regardless of what is
displayed in the work area when you create the report programmatically using the
Simulink.sdi.report function.

Configure the Simulation Data Inspector

Compare Pane

By default, the Compare pane shows the signal name, the absolute and relative tolerances used in
the signal comparison, and the maximum difference from the comparison result. To display different
or additional metadata in the results on the Compare pane, select the check box next to each piece
of metadata you want to display in the Table Columns preference in the Compare section. You can
always view complete metadata for the signals compared for a selected signal result using the
Properties pane, where metadata that differs between the compared signals is highlighted. Signal
metadata displayed on the Compare pane does not affect the contents of comparison reports.

Signal Selection on the Inspect Pane

You can configure how you select signals to plot on the selected subplot in the Simulation Data
Inspector. By default, you use check boxes next to each signal to plot. You can also choose to plot
signals based on selection in the work area. Use Check Mode when creating views and visualizations
that represent findings and analysis of a data set. Use Browse Mode to quickly view and analyze
data sets with a large number of signals.

For more information about creating visualizations using Check Mode, see “Create Plots Using the
Simulation Data Inspector”.

For more information about using Browse Mode, see “Visualize Many Logged Signals”.

Note To use Browse Mode, your layout must include only Time Plot visualizations.

How Signals Are Aligned for Comparison

When you compare runs using the Simulation Data Inspector, the comparison algorithm pairs signals
for signal comparison through a process called alignment. You can align signals between the
compared runs using one or more of the signal properties shown in the table.

Property Description

Data Source Path of the variable in the MATLAB workspace for
data imported from the workspace

Path Block path for the source of the data in its model

SID Automatically assigned Simulink identifier

Signal Name Name of the signal

You can specify the priority for each piece of metadata used for alignment. The Align By field
specifies the highest priority property used to align signals. The priority drops with each subsequent
Then By field. You must specify a primary alignment property in the Align By field, but you can
leave any number of Then By fields blank.

By default, the Simulation Data Inspector aligns signals between runs according to this flow chart.

12-27

12 Ssimulation Data Inspector

For each pair >
of signals

NO Do
Signal Names

match?

Do NO
Data Sources

match?

Warn umatched

signals

Do Paths match?

12-28

YES

Compare

signals

For more information about configuring comparisons in the Simulation Data Inspector, see “How the
Simulation Data Inspector Compares Data”.

Colors Used to Display Comparison Results

You can configure the colors used to display comparison results using the Simulation Data Inspector
preferences. You can specify whether to use the signal color from the Inspect pane or a fixed color
for the baseline and compared signals. You can also choose colors for the tolerance and the difference
signal.

By default, the Simulation Data Inspector displays comparison results using fixed colors for the
baseline and compared signals. Using a fixed color allows you to avoid the baseline signal color and
compared signal color being either the same or too similar to distinguish.

Signal Grouping

You can specify how to group signals within a run in the Simulation Data Inspector. The preferences
apply to both the Inspect and Compare panes and comparison reports. You can group signals by:

* Domain — Signal type. For example, signals created by signal logging have a domain of Signal,
while signals created from logging model outputs have a domain of Qutports.

* Physical System Hierarchy — Signal Simscape™ physical system hierarchy. The option to group by
physical system hierarchy is available when you have a Simscape license.

» Data Hierarchy — Signal location within structured data. For example, data hierarchy grouping
reflects the hierarchy of a bus.

* Model Hierarchy — Signal location within model hierarchy. Grouping by model hierarchy can be
helpful when you log data from a model that includes model or subsystem references.

Grouping signals adds rows for the hierarchical nodes, which you can expand to show the signals
within that node. By default, the Simulation Data Inspector groups signals by domain, then by
physical system hierarchy (if you have a Simscape license), and then by data hierarchy.

To remove grouping and display a flat list of signals in each run, select None for all grouping options.

Configure the Simulation Data Inspector

Programmatic Use

To specify how to group signals programmatically, use the Simulink.sdi.setTableGrouping
function.

Data to Stream from Parallel Simulations

When you run parallel simulations using the parsim function, you can stream logged simulation data
to the Simulation Data Inspector. A dot next to the run name in the Inspect pane indicates the status
of the simulation that corresponds to the run, so you can monitor simulation progress while
visualizing the streamed data. You can control whether data streams from a parallel simulation based
on the type of worker the data comes from.

By default, the Simulation Data Inspector is configured for manual import of data from parallel
workers. You can use the Simulation Data Inspector programmatic interface to inspect the data on
the worker and decide whether to send it to the client Simulation Data Inspector for further analysis.
To manually move data from a parallel worker to the Simulation Data Inspector, use the
Simulink.sdi.sendWorkerRunToClient function.

You may want to automatically stream data from parallel simulations that run on local workers or on
local and remote workers. Streaming data from both local and remote workers may affect simulation
performance, depending on how many simulations you run and how much data you log. When you
choose to stream data from local workers or all parallel workers, all logged simulation data
automatically shows in the Simulation Data Inspector.

Programmatic Use
You can configure Simulation Data Inspector support for parallel worker data programmatically using

the Simulink.sdi.enablePCTSupport function.

Options for Saving and Loading Session Files

You can specify a maximum amount of memory to use while loading or saving a session file. By
default, the Simulation Data Inspector uses a maximum of 100 MB of memory when you load or save
a session file. You can specify a memory use limit as low as 50 MB.

To reduce the size of the saved session file, you can specify a compression option.

* None — Do not compress saved data.
* Normal — Compress the saved file as much as possible.
* Fastest — Compress the saved file less than Normal compression for faster save time.

Signal Display Units

Signals in the Simulation Data Inspector have two units properties: stored units and display units.
The stored units represent the units of the data saved to disk. The display units specify how the
Simulation Data Inspector displays the data. You can configure the Simulation Data Inspector to use a
system of units to define the display units for all signals. You can choose either the SI or US
Customary system of units, or you can display data using its stored units.

12-29

12 Ssimulation Data Inspector

When you use a system of units to define display units for signals in the Simulation Data Inspector,
the display units update for any signal with display units that are not valid for that unit system. For
example, if you select SI units, the display units for a signal may update from ft to m.

Note The system of units you choose to use in the Simulation Data Inspector does not affect the
stored units for any signal. You can convert the stored units for a signal using the convertUnits
function. Conversion may result in loss of precision.

In addition to selecting a system of units, you can specify override units so that all signals of a given
measurement type are displayed using consistent units. For example, if you want to visualize all
signals that represent weight using units of kg, specify kg as an override unit.

Tip For a list of units supported by Simulink, enter showunitslist in the MATLAB Command
Window.

You can also modify the display units for a specific signal using the Properties pane. For more
information, see “Modify Signal Properties in the Simulation Data Inspector”.

Programmatic Use

Configure the unit system and override units using the Simulink.sdi.setUnitSystem function.
You can check the current units preferences using the Simulink.sdi.getUnitSystem function.

See Also

Functions

Simulink.sdi.clearPreferences | Simulink.sdi.setRunNamingRule |
Simulink.sdi.setTableGrouping | Simulink.sdi.enablePCTSupport |
Simulink.sdi.setArchiveRunLimit | Simulink.sdi.setAutoArchiveMode

More About

. “Iterate Model Design Using the Simulation Data Inspector”
. “How the Simulation Data Inspector Compares Data”

. “Compare Simulation Data”

. “Create Plots Using the Simulation Data Inspector”

. “Modify Signal Properties in the Simulation Data Inspector”

12-30

How the Simulation Data Inspector Compares Data

How the Simulation Data Inspector Compares Data

You can tailor the Simulation Data Inspector comparison process to fit your requirements in multiple
ways. When comparing runs, the Simulation Data Inspector:

1 Aligns signal pairs in the Baseline and Compare To runs based on the Alignment settings.

The Simulation Data Inspector does not compare signals that it cannot align.
2 Synchronizes aligned signal pairs according to the specified Sync Method.
Values for time points added in synchronization are interpolated according to the specified
Interpolation Method.
Computes the difference of the signal pairs.
4 Compares the difference result against specified tolerances.

When the comparison run completes, the results of the comparison are displayed in the navigation

pane.
Status Comparison Result
(] Difference falls within the specified tolerance.
Q Difference violates specified tolerance.
The signal does not align with a signal from the
Compare To run.

When you compare signals with differing time intervals, the Simulation Data Inspector compares the
signals on their overlapping interval.

Signal Alignment

In the alignment step, the Simulation Data Inspector decides which signal from the Compare To run
pairs with a given signal in the Baseline run. When you compare signals with the Simulation Data
Inspector, you complete the alignment step by selecting the Baseline and Compare To signals.

The Simulation Data Inspector aligns signals using a combination of their Data Source, Path, SID, and
Signal Name properties.

Property Description

Data Source Path of the variable in the MATLAB workspace for
data imported from the workspace

Path Block path for the source of the data in its model

SID Automatically assigned Simulink identifier

Signal Name Name of the signal in the model

With the default alignment settings, the Simulation Data Inspector aligns signals between runs
according to this flow chart.

12-31

12 Ssimulation Data Inspector

For each pair
of signals

NO Do
Signal Names

match?

Do NO
Data Sources

match?

Warn umatched

signals

Do Paths match?

N N N ey

YES

» ompare

signals

You can specify the priority for each of the signal properties used for alignment in the Simulation
Data Inspector Preferences. The Align By field specifies the highest priority property used to align
signals. The priority drops with each subsequent Then By field. You must specify a primary
alignment property in the Align By field, but you can leave any number of the Then By fields blank.

Synchronization

Often, signals that you want to compare don't contain the exact same set of time points. The
synchronization step in Simulation Data Inspector comparisons resolves discrepancies in signals' time
vectors. You can choose union or intersection as the synchronization method.

When you specify union synchronization, the Simulation Data Inspector builds a time vector that
includes every sample time between the two signals. For each sample time not originally present in
either signal, the Simulation Data Inspector interpolates the value. The second graph in the
illustration shows the union synchronization process, where the Simulation Data Inspector identifies
samples to add in each signal, represented by the unfilled circles. The final plot shows the signals
after the Simulation Data Inspector has interpolated values for the added time points. The Simulation
Data Inspector computes the difference using the signals in the final graph, so that the computed
difference signal contains all the data points between the signals.

Synchronize

SN N SN N N N N

12-32

When you specify intersection synchronization, the Simulation Data Inspector uses only the
sample times present in both signals in the comparison. In the second graph, the Simulation Data
Inspector identifies samples that do not have a corresponding sample for comparison, shown as
unfilled circles. The final graph shows the signals used for the comparison, without the samples
identified in the second graph.

How the Simulation Data Inspector Compares Data

054

05

N s N

N N N N N TN Y e

W Sine, T=5, linear

Synchronize

The choice between the synchronization options involves a trade off between speed and accuracy. The
interpolation required by union synchronization takes time, but provides a more precise result.
When you use intersection synchronization, the comparison finishes quickly because the
Simulation Data Inspector computes the difference for fewer data points and does not interpolate.
However, some data is discarded and precision lost with intersection synchronization.

Interpolation

The interpolation property of a signal determines how the Simulation Data Inspector displays the
signal and how additional data values are computed in synchronization. You can choose to interpolate
your data with a zero-order hold (zoh) or a linear approximation. You can also specify no
interpolation.

W Sine, T=5, zoh Sine, T=5, none

When you specify zoh or none for the Interpolation Method, the Simulation Data Inspector
replicates the data of the previous sample for interpolated sample times. When you specify linear
interpolation, the Simulation Data Inspector uses samples on either side of the interpolated point to
linearly approximate the interpolated value. Typically, discrete signals use zoh interpolation and
continuous signals use Linear interpolation. You can specify the Interpolation Method for your
signals in the signal properties.

Tolerance Specification

The Simulation Data Inspector allows you to specify the scope and value of the tolerance for your
signal. You can define a tolerance band using any combination of absolute, relative, and time
tolerance values, and you can specify whether the specified tolerance applies to an individual signal
or to all the signals in a run.

12-33

12 simulation Data Inspector

Tolerance Scope

In the Simulation Data Inspector, you can specify the tolerance for your data globally or for an
individual signal. Global tolerance values apply to all signals in a run that do not have Override
Global Tol set to yes. You can specify global tolerance values for your data at the top of the
graphical viewing area in the Compare view. To specify signal specific tolerance values, edit the
signal properties and ensure the Override Global Tol property is set to yes.

Tolerance Computation

In the Simulation Data Inspector, you can specify a tolerance band for your run or signal using a
combination of absolute, relative, and time tolerance values. When you specify the tolerance for your
run or signal using multiple types of tolerances, each tolerance can yield a different answer for the
tolerance at each point. The Simulation Data Inspector computes the overall tolerance band by
selecting the most lenient tolerance result for each data point.

When you define your tolerance using only the absolute and relative tolerance properties, the
Simulation Data Inspector computes the tolerance for each point as a simple maximum.

tolerance = max(absoluteTolerance, relativeTolerance*abs(baselineData));

The upper boundary of the tolerance band is formed by adding tolerance to the Baseline signal.
Similarly, the Simulation Data Inspector computes the lower boundary of the tolerance band by
subtracting tolerance from the Baseline signal.

When you specify a time tolerance, the Simulation Data Inspector evaluates the time tolerance first,
over a time interval defined as [(tgan,-tol), (tgmpttol)] for each sample. The Simulation Data
Inspector builds the lower tolerance band by selecting the minimum point on the interval for each
sample. Similarly, the maximum point on the interval defines the upper tolerance for each sample.

12-34

t-tol t_ t+iol -
time time

If you specify a tolerance band using an absolute or relative tolerance in addition to a time tolerance,
the Simulation Data Inspector applies the time tolerance first, and then applies the absolute and
relative tolerances to the maximum and minimum points selected with the time tolerance.

How the Simulation Data Inspector Compares Data

Atolerance = max|absalute Tolerance, relative Tolerance*mas)

[B2 2@

Atolerance = max|absaluteTolerance relative Tolerance*min)

.. oWer iolerance b-

O%-9

ttol t_ t+iol
time time

upperTolerance = max + max(absoluteTolerance, relativeTolerance*max)

lowerTolerance min - max(absoluteTolerance, relativeTolerance*min)

Limitations

The Simulation Data Inspector does not support comparing:

» Signals of data types int64 or uint64.
* Variable-size signals.

See Also

Related Examples
. “Compare Simulation Data”

12-35

12 Ssimulation Data Inspector

Save and Share Simulation Data Inspector Data and Views

12-36

After you inspect, analyze, or compare your data in the Simulation Data Inspector, you can share your
results with others. The Simulation Data Inspector provides several options for sharing and saving
your data and results, depending on your needs. With the Simulation Data Inspector, you can:

* Save your data and layout modifications in a Simulation Data Inspector session.

» Share your layout modifications in a Simulation Data Inspector view.

* Share images and figures of plots you create in the Simulation Data Inspector.

* Create a Simulation Data Inspector report.

* Export data to the workspace.

» Export data to a file.

Save and Load Simulation Data Inspector Sessions

If you want to save or share data along with a configured view in the Simulation Data Inspector, save
your data and settings in a Simulation Data Inspector session. You can save sessions as MAT- or
MLDATX-files. The default format is MLDATX. When you save a Simulation Data Inspector session,
the session file contains:

* All runs, data, and properties from the Inspect pane, including which run is the current run and
which runs are in the archive.

» Plot display selection for signals in the Inspect pane.

* Subplot layout and line style and color selections.

Note Comparison results and global tolerances are not saved in Simulation Data Inspector sessions.

To save a Simulation Data Inspector session:

1 Hover over the save icon on the left side bar. Then, click Save As.

Save /Save As
Save IZ:-atﬁlI E:ectnr session (Cirl+S)

Name the file.
Browse to the location where you want to save the session, and click Save.

For large datasets, a status overlay in the bottom right of the graphical viewing area displays
information about the progress of the save operation and allows you to cancel the save operation.

The Save tab of the Simulation Data Inspector preferences menu on the left side bar allows you to
configure options related to save operations for MLDATX-files. You can set a limit as low as 50MB on
the amount of memory used for the save operation. You can also select one of three Compression
options:

* None, the default, applies no compression during the save operation.

Save and Share Simulation Data Inspector Data and Views

* Normal creates the smallest file size.

* Fastest creates a smaller file size than you would get by selecting None, but provides a faster
save time than Normal.

To load a Simulation Data Inspector session, click the open icon on the left side bar. Then,
browse to select the MLDATX-file you want to open, and click Open.

Alternatively, you can double-click the MLDATX-file. MATLAB and the Simulation Data Inspector open
if they are not already open.

When the Simulation Data Inspector already contains runs and you open a session, all of the runs in
the session move to the archive. The view updates to show plotted signals from the session file. You
can drag runs between the work area and archive as desired.

When the Simulation Data Inspector does not contain runs and you open a session, the Simulation
Data Inspector puts runs in the work area and archive as specified in the file.

Share Simulation Data Inspector Views

When you have different sets of data that you want to visualize the same way, you can save a view. A
view saves the layout and appearance characteristics of the Simulation Data Inspector without saving
the data. Specifically, a view saves:

» Plot visualization type, layout, axis ranges, linking characteristics, and normalized axes

* Location of signals in the plots, including plotted signals in the archive

* Signal grouping and columns on display in the Inspect pane

+ Signal color and line styling

To save a view:
1
Click Visualizations and layouts
2 In Saved Views, click Save current view.

In the dialog box, specify a name for the view and browse to the location where you want to save
the MLDATX-file.

4 Click Save.
To load a view:

1
Click Visualizations and layouts

2 In Saved Views, click Open saved view.
3 Browse to the view you would like to load, and click Open.

Share Simulation Data Inspector Plots

Use the snapshot feature to share the plots you generate in the Simulation Data Inspector. You can
export your plots to the clipboard to paste into a document, as an image file, or to a MATLAB figure.

12-37

12 Ssimulation Data Inspector

12-38

You can choose to capture the entire plot area, including all subplots in the plot area, or to capture
only the selected subplot.

Click the camera icon on the toolbar to access the snapshot menu. Use the radio buttons to
select the area you want to share and how you want to share the plot. After you make your selections,
click Snapshot to export the plot.

- 0]
— A

Take snapshot of:

& Entire plot area

Selected plot only

Send to:
® | Clipboard
Image File

MATLAE Figure

If you create an image, select where you would like to save the image in the file browser.

You can create snapshots of your plots in the Simulation Data Inspector programmatically using
Simulink.sdi.snapshot.

Create Simulation Data Inspector Report

To generate documentation of your results quickly, create a Simulation Data Inspector report. You can
create a report of your data in either the Inspect or the Compare pane. The report is an HTML file
that includes information about all the signals and plots in the active pane. The report includes all
signal information displayed in the signal table in the navigation pane. For more information about
configuring the table, see “Inspect Metadata”.

To generate a Simulation Data Inspector Report:

1

Click the create report icon on the left bar.
2 Specify the type of report you want to create.

* Select Inspect to include the plots and signals from the Inspect pane.

Save and Share Simulation Data Inspector Data and Views

* Select Compare to include the data and plots from the Compare pane. When you generate a
Compare Runs report, you can choose to Report only mismatched signals or to Report
all signals. If you select Report only mismatched signals, the report shows only signal
comparisons that are not within the specified tolerances.

Create Report ? X

Create a repart of the runs or companson plots

Type: ® [nspect

Compare

Save as:
File name: Mew_Report_himl
Folder: C\ModelProject -

Options:
If report exists, increment file name to prevent overwriting
Display partial block path (modelname/_. /blockname)

=

3 Specify a File name for the report, and navigate to the Folder where you want to save the
report.

4 Click Create Report.

The generated report automatically opens in your default browser.

Export Data to the Workspace or a File

You can use the Simulation Data Inspector to export data to the base workspace, a MAT file, or a
Microsoft Excel file. You can export a selection of runs and signals, runs in the work area, or all runs
in the Inspect pane, including the Archive.

When you export a selection of runs and signals, make the selection of data to export before clicking
-~
—_—J
the export button

Only the selected runs and signals are exported. In this example, only the x1 signals from Run 1 and
Run 2 are exported. The check box selections for plotting data do not affect whether a signal is
exported.

12-39

12 Ssimulation Data Inspector

12-40

Q 4

Inspect Compare

Filter Signals
» Run 2: vdp [Current]
« Run 1: vdp

I

When you export a single signal to the workspace or a MAT file, the signal is exported to a
timeseries object. Data exported to the workspace or a MAT file for a run or multiple signals is
stored as a Simulink.SimulationData.Dataset object.

To export data to a file, select the File option in the Export dialog. You can specify a file name and
browse to the location where you want to save the exported file. When you export data to a MAT file,
a single exported signal is stored as a timeseries object, and runs or multiple signals are stored as
a Simulink.SimulationData.Dataset object. When you export data to a Microsoft Excel file, the
data is stored using the format described in “Microsoft Excel Import, Export, and Logging Format”.

To export to a Microsoft Excel file, select the XLSX extension from the drop-down. When you export
data to a Microsoft Excel file, you can specify additional options for the format of the data in the
exported file. If the file name you provided already exists, you can choose to overwrite the entire file
or to only overwrite sheets containing data that corresponds to the exported data. You can also
choose which metadata to include and whether signals with identical time data share a time column
in the exported file.

Export Video Signal to an MP4 File

You can export a 2D or 3D signal that contains RGB or monochrome video data to an MP4 file using
the Simulation Data Inspector. For example, when you log a video signal in a simulation, you can
export the data to an MP4 file and view the video using a video player. To export a video signal to an
MP4 file:

=

Select the signal you want to export.

-~

Click Export — in the toolbar on the left or right-click the signal and select Export.
In the Export dialog box, choose to export Selected runs and signals to a file.

Specify a file name and the path to the location where you want to save the file.

Select MP4 video file from the list and click Export.

For the option to export to an MP4 file to be available:

Save and Share Simulation Data Inspector Data and Views

* You must export only one signal at a time.
* The selected signal must be 2D or 3D and contain RGB or monochrome video data.

* The selected signal must be represented in the Simulation Data Inspector as a single signal with
multidimensional sample values.

You may need to convert the signal representation before exporting the signal data. For more
information, see “Analyze Multidimensional Signal Data”.

* The data type for the signal values must be double, single, or uint8.

Exporting a video signal to an MP4 file is not supported for Linux operating systems.

See Also

Functions
Simulink.sdi.saveView

Related Examples

. “View Data in the Simulation Data Inspector”
. “Inspect Simulation Data”
. “Compare Simulation Data”

12-41

12 Ssimulation Data Inspector

Inspect and Compare Data Programmatically

You can harness the capabilities of the Simulation Data Inspector from the MATLAB command line
using the Simulation Data Inspector API.

The Simulation Data Inspector organizes data in runs and signals, assigning a unique numeric
identification to each run and signal. Some Simulation Data Inspector API functions use the run and
signal IDs to reference data, rather than accepting the run or signal itself as an input. To access the
run IDs in the workspace, you can use Simulink.sdi.getAl1RunIDs or
Simulink.sdi.getRunIDByIndex. You can access signal IDs through a Simulink.sdi.Run
object using the getSignalIDByIndex method.

The Simulink.sdi.Run and Simulink.sdi.Signal classes provide access to your data and allow
you to view and modify run and signal metadata. You can modify the Simulation Data Inspector
preferences using functions like Simulink.sdi.setSubPlotLayout,
Simulink.sdi.setRunNamingRule, and Simulink.sdi.setMarkersOn. To restore the
Simulation Data Inspector's default settings, use Simulink.sdi.clearPreferences.

Create a Run and View the Data

This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine vals = sin(2*pi/5*time);

sine_ts = timeseries(sine vals,time);
sine ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);

cos_ts = timeseries(cos vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

Simulink.sdi.view

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids’;
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

12-42

Inspect and Compare Data Programmatically

add(sinusoidsRun, 'vars',sine ts,cos ts);
Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine sig = getSignalByIndex(sinusoidsRun,1);
sine sig.LineColor = [0 0 1];

sine sig.LineDashed = '-."';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 O];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

plotOnSubPlot(sine sig,1,1,true);
plotOnSubPlot(cos sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx"')

Compare Two Signals in the Same Run

You can use the Simulation Data Inspector programmatic interface to compare signals within a single
run. This example compares the input and output signals of an aircraft longitudinal controller.

First, load the session that contains the data.
Simulink.sdi.load('AircraftExample.mldatx"');

Use the Simulink.sdi.Run.getLatest function to access the latest run in the data.
aircraftRun = Simulink.sdi.Run.getlLatest;

Then, you can use the Simulink.sdi.getSignalsByName function to access the Stick signal,
which represents the input to the controller, and the alpha, rad signal that represents the output.

getSignalsByName(aircraftRun, 'Stick');
getSignalsByName(aircraftRun, 'alpha, rad');

Before you compare the signals, you can specify a tolerance value to use for the comparison.
Comparisons use tolerance values specified for the baseline signal in the comparison, so set an
absolute tolerance value of 0.1 on the Stick signal.

12-43

12 Ssimulation Data Inspector

12-44

stick.AbsTol = 0.1;

Now, compare the signals using the Simulink.sdi.compareSignals function. The Stick signal is
the baseline, and the alpha, rad signal is the signal to compare against the baseline.

comparisonResults = Simulink.sdi.compareSignals(stick.ID,alpha.ID);
match = comparisonResults.Status

match =
ComparisonSignalStatus enumeration

OutOfTolerance

The comparison result is out of tolerance. You can use the Simulink. sdi.view function to open the
Simulation Data Inspector to view and analyze the comparison results.

Compare Runs with Global Tolerance

You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx"');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs function to get the run
IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAl1RunIDs;
runIDl = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns function to compare the runs. Specify a global relative
tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1, runID2, 'reltol',0.2, " 'timetol',0.5);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

runResult.Summary

ans = struct with fields:
OutOfTolerance:
WithinTolerance:
Unaligned:
UnitsMismatch:

Empty:

Canceled:

EmptySynced:
DataTypeMismatch:

[ocNoNoNoNoNONI N

Inspect and Compare Data Programmatically

TimeMismatch: 0
StartStopMismatch: 0
Unsupported: 0

All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult function.

saveResult(runResult, 'InputFilterComparison');

Analyze Simulation Data Using Signal Tolerances

You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAl1RunIDs;
runIDTsl = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.
noTolDiffResult = Simulink.sdi.compareRuns(runIDTsl, runIDTs2);
Use the getResultByIndex function to access the comparison results for the q and alpha signals.

gResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

gResult.Status

ans =
ComparisonSignalStatus enumeration

OutOfTolerance
alphaResult.Status

ans =
ComparisonSignalStatus enumeration

12-45

12 Ssimulation Data Inspector

12-46

OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that
correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.
runTsl = Simulink.sdi.getRun(runIDTsl);

gSig = getSignalsByName(runTsl, 'q, rad/sec');
alphaSig = getSignalsByName(runTsl, 'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

gSig.AbsTol = 0.1;
gSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTsl, runIDTs2);
gResult2 = getResultByIndex(tolDiffResult,1);

alphaResult2 = getResultByIndex(tolDiffResult,2);
gResult2.Status

ans =
ComparisonSignalStatus enumeration

WithinTolerance

alphaResult2.Status

ans =
ComparisonSignalStatus enumeration

WithinTolerance

See Also
Simulation Data Inspector

Inspect and Compare Data Programmatically

Related Examples

. “Compare Simulation Data”
. “How the Simulation Data Inspector Compares Data”
. “Create Plots Using the Simulation Data Inspector”

12-47

12 Ssimulation Data Inspector

Limit the Size of Logged Data

12-48

In this section...

“Limit the Number of Runs Retained in the Simulation Data Inspector Archive” on page 12-48
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data” on page 12-48
“View Data Only During Simulation” on page 12-49

“Reduce the Number of Data Points Logged from Simulation” on page 12-49

Logging simulation data can produce large amounts of data that fill up disk space. Such situations
include logging many signals, logging data for long simulations, and running many simulations
without deleting run data from the Simulation Data Inspector. You can choose among several options
to limit the size of logged simulation data. You can:

* Limit the number of runs retained in the Simulation Data Inspector archive.

* Reduce the number of data points logged in each simulation.

* Specify a minimum disk space requirement or maximum size for logged data.
* Configure logging for only viewing data during simulation.

Depending on your requirements, you can use more than one strategy to limit the size of logged data.

Limit the Number of Runs Retained in the Simulation Data Inspector
Archive

When you run multiple simulations in a single MATLAB session, logged simulation data accumulates
in the Simulation Data Inspector even if you overwrite the logging data in the MATLAB workspace. To
reduce the amount of data the Simulation Data Inspector retains, you can configure a limit for the
number of runs stored in the archive. When the number of runs in the archive reaches the size limit,
the Simulation Data Inspector starts to delete runs from the archive on a first-in, first-out basis.

Configure the archive Size setting in the Simulation Data Inspector preferences. The size limit only
applies to runs in the archive. For the Simulation Data Inspector to automatically limit data retention,
select Automatically archive and specify the maximum number of runs to retain in the archive. By
default, Automatically archive is enabled with an archive size limit of twenty runs. If you
experience issues with logged data consuming too much disk space, consider adjusting the size limit
for the archive in the Simulation Data Inspector preferences.

Specify a Minimum Disk Space Requirement or Maximum Size for
Logged Data

You can use preferences in the Simulation Data Inspector to directly limit the size of logged data by
specifying a minimum amount of disk space to leave free or by specifying a maximum size for logged
data on disk. Each setting accounts for all kinds of logged data. By default, logged data must leave at
least 100 MB of free disk space with no maximum size limit. Specify the required disk space and
maximum size in GB, and specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes

Limit the Size of Logged Data

retaining data for the current run. As the free disk space or logged data size approaches the limit,
prior runs are deleted first to free up space for data being logged in the current run. If deleting runs
does not free up enough space, recording is disabled. To prioritize retaining prior data, change the
When low on disk space setting to Keep prior runs and stop recording. You see a warning
message when prior runs are deleted and when recording is disabled. If recording is disabled due to
the size of logged data, you need to change the Record Mode back to View and record data to
continue logging data, after you have freed up disk space.

View Data Only During Simulation

In some situations, you may want to only view the data for logged signals and not save the values. For
example, when using the Simulation Data Inspector to visualize data streaming from hardware, you
may only want to view the data live and not record it. You can change the Record mode in the
Simulation Data Inspector preferences to View during simulation only so that logged data is not
saved and you can still view the data during simulation. The Record mode is reset to View and
record data at the start of each MATLAB session.

When you change the Record mode to View during simulation only:

* Logged data is not available in the Simulation Data Inspector or workspace after simulation.

* You can view data using dashboard blocks, scopes, and the Simulation Data Inspector, but plots
clear when you pan or zoom.

* You cannot access logged data during simulation using the Simulation Data Inspector
programmatic interface.

Reduce the Number of Data Points Logged from Simulation

Model configuration parameters and signal properties allow you to limit the number of data points
logged in a simulation. Be sure to carefully consider data requirements when limiting logged data
points. Limiting data can skip critical time points, and can lead to aliasing, if your effective sample
rate is too low.

You can reduce the number of data points using:

* Decimation — Log every nth signal value.
* Limit data points to last — Only log the last n signal values.
* Logging intervals — Specify specific time intervals in which to log data.

For details, see “Specify Signal Values to Log”.

See Also

Tools
Simulation Data Inspector

Related Examples
. “Specify Signal Values to Log”
. “Configure the Simulation Data Inspector”

12-49

Execution with MATLAB Scripts

51

Real-Time Application Objects and
Options in the MATLAB Interface

13 RealTime Application Objects and Options in the MATLAB Interface

Target and Application Objects

13-2

The Simulink Real-Time software uses a Target object to represent a target computer and an
Application object to represent a real-time application. To run and control real-time applications
on the target computer, use the object functions.

An understanding of the Target and Application object properties and functions helps you to
control and test your real-time application on the target computer.

A Target object on the development computer represents the interface to a real-time application and
the RTOS on the target computer. To run and control the real-time application, use Target objects.

When you change a Target object property on the development computer, information is exchanged
between the target computer and the real-time application.

To create a Target object for the default target computer, in the MATLAB Command Window, type:

tg = slrealtime

A Target object has properties and functions specific to that object. The real-time application object
functions enables you to control a real-time application on the target computer from the development
computer. You enter real-time application object functions in the MATLAB Command Window on the
development computer or you can use MATLAB code scripts. To access the help for these functions
from the command line, use the syntax:

doc slrealtime/function_name
For example, to get help on the load function, type:

doc slrealtime/load

To get a list of all the functions for the Target object, use the methods function. For example, to get
the functions for Target object tg, type:

methods(tg)

If you want to control the real-time application from the target computer, use target computer
commands (see “Control Real-Time Application at Target Computer Command Line” on page 9-2).

Control Real-Time Application by Using Objects

You can create a real-time application and control it by using Target and Application objects
1 Open a model and build a real-time application. This example uses the slrt _ex osc model.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’,
‘examples', 'slrt _ex osc'));
slbuild('slrt ex osc');
2 Create Target and Application objects to represent the target computer and the real-time
application.

tg = slrealtime('TargetPCl');
app = slrealtime.Application('slrt ex osc');

Target and Application Objects

3 Load the real-time application on the target computer by using the Target object.

load(tg, 'slrt ex osc');
4 Setthe Target object stoptime property for the real-time application.

setStopTime(tg,inf);
5 Getthe Application object options property values from the real-time application.

app.Options.get("stoptime")
ans =

Inf
6 Start the real-time application by using the Target object .

start(tg);
7 Stop the real-time application by using the Target object .

stop(tg);

Use Real-Time Application Object Functions

To run Target object and Application functions, use the function name(target object,
argument list) syntax.

Unlike properties, for which partial but unambiguous names are permitted, you must enter function
names in full, in lowercase. For example, to start a real-time application on target computer tg, in the
MATLAB Command Window, type:

tg = slrealtime;
start(tg);

See Also
Target | Application

More About

. “Control Real-Time Application at Target Computer Command Line” on page 9-2

13-3

Simulink Real-Time Instruments and
Instrument Panel Apps

“Add Instruments to Real-Time Application from Simulink Model” on page 14-2
* “Instrumentation Apps for Real-Time Applications” on page 14-5
* “Create App Designer Instrument Panels by Using App Generator” on page 14-6

* “Create App Designer Instrument Panels by Using Simulink Real-Time Components”
on page 14-9

* “Create Standalone Instrument Panel App by Using Application Compiler” on page 14-14

14 Ssimulink Real-Time Instruments and Instrument Panel Apps

Add Instruments to Real-Time Application from Simulink Model

14-2

As an alternative to marking signals in your model for logging, connecting a signal to a File Log block
in the model, or selecting signals in a real-time application to stream in the Simulink Real-Time
explorer, you can stream signal data to the Simulation Data Inspector by using Instrument buttons in
the Simulink Editor. You can select a signal for streaming by using the Instrument buttons when the
signal is:

* Available in the model and in the real-time application that is built from the model.

» Uses specified (not inherited) sample time.

» Uses globally accessible memory in the real-time application.

* Not connected to a Send or Message Send block.

Unlike marking signals for streaming or connecting signals to File Log blocks, the Instrument buttons
use bind mode in workflows that let you add an instrument to the model and make the instrument
available in the real-time application without rebuilding the real-time application. You can export the
instrument from the model or import the instrument into the model.

To select signals for streaming to the Simulation Data Inspector by using the Instrument buttons in
the Simulink Editor:

1 Open the model.

2 Connect the development computer to the target computer.

3 To generate the real-time application, build the model.
4

To put the model in bind mode by using the Instrument buttons, in the Simulink Editor, select
Real-Time > Review Results > Add Instrument.

While in bind mode, a link symbol appears with the cursor, and an exit icon appears in the upper-
right corner of the model. When you are ready to exit bind mode, on the model canvas, click the

X

5 To add a signals to an instrument, select a block and select the check box next to the signal.

exit icon.

When you run the real-time application, the signals that you have added to an instrument are
streamed to the Simulation Data Inspector. After you have added an instrument to the model, the
label on the Add Instrument button changes to Configure Instrument.

6 To re-enter bind mode by using the Instrument buttons and add or remove signals from the
instrument, select Real-Time > Review Results > Configure Instrument.

7 To remove the instrument added by using Add Instrument, select Real-Time > Review Results
> Remove Instrument.

8 To highlight all signals in the model that are in the instrument, select Real-Time > Review
Results > Highlight Instrument.

9 To import or export an instrument in the model, select Real-Time > Review Results > Import
Instrument or select Real-Time > Review Results > Export Instrument.

10 After making changes to an instrument, to stream signals from the real-time application to the
Simulation Data Inspector, deploy the real-time application to the target computer and start the
application. For example, select Real-Time > Run on Target.

Add Instruments to Real-Time Application from Simulink Model

The Instrument buttons on the Real-Time tab of the Simulink Editor provide additional workflow

options.

Commands

Instrument Button Operations

L2

To enter bind mode to add an instrument or enter bind mode to add or
remove signals from an instrument, click the Add Instrument button or
Configure Instrument button on the Real-Time tab in the Simulink
Editor.

The Add Instrument button creates an Instrument object, similar to the
operation of the slrealtime.Instrument function. The Add
Instrument button puts the model in bind mode to create an Instrument
object. You can select any number of signals from the model to include in
the Instrument object.

After creating the Instrument, the Add Instrument button changes to the
Configure Instrument button. The Configure Instrument button puts
the model in bind mode and lets you add or remove signals from an
Instrument, similar to the operation of the addSignal function and
removeSignal function.

\

The Remove Instrument button removes the instrument created by Add
Instrument or Configure Instrument, similar to the way that the
removeInstrument function removes an instrument from the selected
target object.

Use the Highlight Instrument button to indicate signals that are
included in an instrument in the model.

Use the Import Instrument button to import an instrument (previously
saved to a MAT file) into the model.

Rk @

Use the Export Instrument button to export an instrument (as a MAT file)
from the model.

An instrument that you add to a model is retained in the model, unless you remove the instrument
with the Remove Instrument button. To remove an instrument that was added in a previous editing
session, use the removeAllInstruments function.

To save and restore an instrument in a model, use the Export Instrument button and Import
Instrument button. A suggested workflow for saving and restoring an instrument in a model is:

1 Add an instrument to the model. Use the instrument to stream signals from the real-time

application.
Export an instrument from the model for streaming in future real-time application runs.

N

Remove an instrument from the model before exiting the Simulink Editor.
Import an instrument to the model when needed to stream signals from the real-time application.

See Also

Simulink Real-Time Explorer | Instrument

14-3

14 simulink Real-Time Instruments and Instrument Panel Apps

Related Examples
. “Add App Designer App to Inverted Pendulum Model” on page 16-15

. “Control Color of Lamp on Instrument Panel” on page 16-116
More About
. “Display and Filter Hierarchical Signals and Parameters” on page 7-69

14-4

Instrumentation Apps for Real-Time Applications

Instrumentation Apps for Real-Time Applications

To visualize the behavior of a real-time application running on a target computer, you can create
instrument panel apps. An instrument panel app is an user-interface application into which you can
insert one or more instruments. To create an instrument panel app, use App Designer or an m-script.

* When you create an instrument panel app in the App Designer Design View, you add instrument
components from the App Designer Component Library to the app. You configure each
instrument by using fields in the Component Browser. In the App Designer Code View, you add
callback code to handle component events, such as new streaming data or interaction with the
app. For more information, see “App Building Components” and “Manage Code in App Designer
Code View”.

* When you create an instrument panel app by using an m-script, you use a programmatic approach
to add each instrument to the panel as Ul component. For more information, see “Create
Callbacks for Apps Created Programmatically”.

To stream signal and parameter data to the instrument panel app from the real-time application, you
use the Instrument object. After you create an instrument object for a real-time application, you can
use instrument object functions to connect signals and parameters from the real-time application to
instrument panel app callbacks.

When identifying parameters and output signals to stream signal to the instrument panel app from
the real-time application, it can be helpful to use the hierarchical display of signals and parameters.
See Simulink Real-Time Explorer. For more information, see “Display and Filter Hierarchical
Signals and Parameters” on page 7-69.

See Also
Simulink Real-Time Explorer | Instrument

Related Examples
. “Add App Designer App to Inverted Pendulum Model” on page 16-15

. “Create App Designer Instrument Panels by Using Simulink Real-Time Components” on page 14-
9

. “Create Standalone Instrument Panel App by Using Application Compiler” on page 14-14

More About

. “App Building Components”
. “Manage Code in App Designer Code View”
. “Display and Filter Hierarchical Signals and Parameters” on page 7-69

14-5

14 Ssimulink Real-Time Instruments and Instrument Panel Apps

Create App Designer Instrument Panels by Using App
Generator

You can create App Designer instrument panels to interface with real-time applications by using the
App Generator button on the Real-Time tab in the Simulink Editor. By using the App Generator,
you can generate an instrument panel for selected signals and parameters in your model. You can

open the generated app in App Designer to customize the instrument panel.

To create an instrument panel for your model by using the App Generator button:

14-6

Open the Simulink Real-Time model.
In the Simulink Editor, on the Real-Time tab, click Review Results > App Generator.

To create an instrument panel from the real-time application file MLDATX, select New > New,
click No to remove the current session, and select the MLDATX file. For information about the
difference between developing an instrument panel from a model SLX file or a real-time
application MLDATX file, see the “Tip About MLDATX and SLX Files” on page 14-8.

In the App Generator, select Signals and Parameters in the model to add as components on the
instrument panel. Click the Add to panel button.

-

After you add each signal or parameter, configure the Control Name and Control Type. The
figure shows some App Generator selections for the slrt_ex osc model.

Create App Designer Instrument Panels by Using App Generator

Simulink Real-Time App Generator®

DESIGMER

or O @ ©
New Open Save Options BINDING INSL:';E_ENT
FILE CONFIGURE M M a
Signals And Paramsters Bindings
k_J\ | | Source Control Name Control Type
b Options = | XirFnc XirFnc Axes
- 5 Named Signals [++] | Signal Generator:Amplit... | Amplitude Knob
+ SigGen [++] | Signal Generator:Frequ... |Freguency Knob
= XfrFnc

~ [*3| sirt_ex_osc

[:4] SignalGenerator-Amplitude
|+ SignalGenerator-Frequency

(L]

[s] Transfer Fen:C -
[ss] Transfer Fen:A
= SigGen

= XirFnc

6 After configuring the Control Name and Control Type for the signals and parameters, click the

Generate App button.

7 To customize the generated application, click the Open in App Designer button.

The App Generator adds controls to your instrument panel that enable the panel to interface with the
real-time application. These controls include the target computer selector, connect button, load
application button, start/stop button, stop time field, and system log. Any instrumented signals from
the model are added in an axis component. For more information, see “Create App Designer
Instrument Panels by Using Simulink Real-Time Components” on page 14-9.

14-7

14 Ssimulink Real-Time Instruments and Instrument Panel Apps

14-8

Tip About MLDATX and SLX Files

You can develop an instrument panel app in the App Generator from a model SLX file (if you start the
App Generator from the Real-Time tab in the Simulink Editor) or from a real-time application
MLDATX file. It is recommended that you develop the instrument panel based on the MLDATX file,
because—when developing from the MLDATX file—the App Generator only lists the signals and
parameters that are present in the generated code. If you develop the instrument panel based on the
SLX file, the App Generator can list more signals than are present in the generated code. These
signals include virtual signals and signals to Scope blocks.

See Also
Simulink Real-Time App Generator | Instrument

Related Examples
. “Add App Designer App to Inverted Pendulum Model” on page 16-15

More About

. “Display and Filter Hierarchical Signals and Parameters” on page 7-69

Create App Designer Instrument Panels by Using Simulink Real-Time Components

Create App Designer Instrument Panels by Using Simulink
Real-Time Components

The Simulink® Real-Time™ components in App Designer ease creation of App Designer instrument
panels for real-time applications. By using the Simulink Real-Time components, you can add
frequently used operations, such as select target and load real-time application, as controls on your
instrument panel with minimal programming of callback functions.

This example shows how the Simulink Real-Time components in App Designer help you develop
instrument panels that are reusable. When you examine the callback code in the example, see that
only code that connects instruments from the real-time application to controls in the instrument panel
uses block path information that is specific to the real-time application. This approach makes it easier
to reuse instrument panels as the interface for other real-time applications.

For more information, see Develop Apps Using App Designer. You also can create instrument panel
applications without using App Designer. For more information, see “Add UI Components to App
Designer Programmatically”.

Create Blank App
To create an App Designer instrument panel by using Simulink Real-Time components:
Open the App Designer. In MATLAB®, select Home > New > App.

Or, in the MATLAB Command Window, type appdesigner. Then, select New > Blank App

Add Components to App

From the Simulink Real-Time group in the Component Library, add real-time application
components to the instrument panel. For this instrument panel, add:

+ Target Selector

* Connect

* Load

» Start/Stop

* Stop Time

* Parameter Table

* Signal Table

From the Instrumentation group in the Component Library, add Instrumentation components to
the instrument panel. For this instrument panel, add Knob and Gauge.

From the Common group in the Component Library, add common components to the instrument
panel. For this instrument panel, add Axes.

Arrange Components in App

Arrange the instrument panel to appear as shown in this instrument panel.

14-9

14 Ssimulink Real-Time Instruments and Instrument Panel Apps

MATLAB App
TargetPC1 v | |u Connected E D
Load Application Start
sirt_ex_osc
Block Path Parameter Value Type Size 8 E 12
: : 6 iy, 14
sirt_ex_osc/Signal Generator | Amplitude 1 double 1x1 N o
slrt_ex_osc/Signal Generator | Freguency 20 double 1x1 = _-'-__ w ,-'-_ L0
27 - 18
1] 20
Knob
Signal Value Enabled /?\\

- -0.5 05
slrt_ex_osc/Signal Generator:1 \
srt_ex_osc/Transfer Fon:l . 1 '.'I

15 15 \/
Gauge
1 Transfer Function &, AME Q¢
L]
=3
=
E_ﬂ.ﬁ -
D i i 1 i i i i 1 i]
0 0.1 0.2 03 04 05 0.6 0.7 0.8 09 1
Time

Configure Options for Components
Select the Knob instrument and change the Limits to 0,20 in the Inspector tab of the Component

Browser.
Select the Gauge instrument and change the Limits to -1.5, 1.5 in the Inspector tab of the

Component Browser.

Save the instrument panel as myInstPanel slrt ex osc.mlapp.

14-10

Create App Designer Instrument Panels by Using Simulink Real-Time Components

Add Callback Code

To add callback code to your App Designer instrument panel and test the instrument panel as a Ul to
a real-time application:

Change to the Code View tab.

In the Component Browser, select node myInstPanel slrt_ex_osc. Select Callbacks. From the
StartupFcn drop-down list, select <add StartupFcn callback>.

Add callback code to connect the instruments to the real-time application. Paste this callback code
into the startup function callback of the instrument panel application. This code connects the
instruments to the real-time application slrt_ex osc.

% Define the real-time application file to load.
app.LoadButton.Application = 'slrt ex osc';

Define parameters parameters to display in the
Parameter Table component. The parameters are
defined in a structure. The block path is the
first element the parameter name.
app.ParameterTable.Parameters = struct(
'BlockPath', {'slrt _ex osc/Signal Generator',

'slrt_ex osc/Signal Generator'},
'ParameterName', {'Amplitude’,

'Frequency'});

0° o° o° o°

% Create a ParameterTuner object and bind

% to the knob component.

myParamFreq = slrealtime.ui.tool.ParameterTuner(app.UIFigure);
myParamFreq.Component = app.Knob;

myParamFreq.BlockPath = 'slrt ex osc/Signal Generator';
myParamFreq.ParameterName = 'Frequency’;

% Define the signals to display in the Signal Table.
% The structure requires the block path of all parameters,
% and the port index of the port connected to the signal.
app.SignalTable.Signals = struct(.
'BlockPath', {'slrt_ex osc/Signal Generator',
'slrt_ex osc/Transfer Fcn'},
'"PortIndex', {1,1});

% Create an Instrument object and connect the gauge

% component.

instMyGauge = slrealtime.Instrument();
instMyGauge.connectScalar(app.Gauge, 'slrt ex osc/Transfer Fcn', 1);

Create another Instrument object and connect to the
axes component.

An Instrument object is needed for each component, but

you can add more signals to the same axes by using connectLine.
instMyAxes = slrealtime.Instrument();
instMyAxes.connectLine(app.UIAxes, 'XfrFnc');
instMyAxes.AxesTimeSpan = 10;

instMyAxes.AxesTimeSpanOverrun = 'scroll';

0° o° o° o° o°

14-11

14 Ssimulink Real-Time Instruments and Instrument Panel Apps

14-12

% Create an InstrumentManager and connect the previously created
% Instrument object.

instMgr = slrealtime.ui.tool.InstrumentManager(app.UIFigure);
instMgr.Instruments = [instMyGauge, instMyAxes];

Save the instrument panel.
Tuning a Workspace Variable

The code shows how to connect the ParameterTuner component to a value on a block. Instead, you
can use slightly different code to connect the ParameterTuner component to a variable or
parameter in the workspace. In the code for the component, the BlockPath is empty, and the
ParameterName is the parameter name instead of the property of the block to tune. The syntax for
the callback could be:

% Create Parameter Tuning object

hParamTuner = slrealtime.ui.tool.ParameterTuner(app.UIFigure);
hParamTuner.Component = app.Knob;

hParamTuner.BlockPath = '';

hParamTuner.ParameterName = 'myParameter';

Recommendations for Callback Code

It is recommended that you make the bindings between instrument panel controls and their related
signals or parameters robust. Robust bindings do not break due to minor changes in a model and are
more easily re-used with a new model.

For signals, a technique that helps produce robust bindings is to specify signals by using signal
names instead of by using a full block path and port index. This technique applies to the SignalTable
component and functions such as connectLine or connectScalar.

For parameters, a technique that helps produce robust bindings is to use workspace variables instead
of block parameters. This technique applies to the ParameterTable component.

For more information, see the examples for SignalTable, ParameterTable, connectLine, and
connectScalar.

Open Model, Build Real-Time Application, Run Instrument Panel

In MATLAB, open the slrt_ex osc model. In the Command Window, type:

open_system(fullfile(matlabroot, 'toolbox"', ...
'slrealtime’, 'examples', 'slrt _ex _osc'))

Build the real-time application. In the Simulink Editor, select Real-Time > Run on Target.

After the model builds and the real-time application runs, in the App Designer, run the instrument
panel application.

From the instrument panel application, connect to the target computer, load the real-time application
slrt_ex osc, set the stop time at 10 seconds, and start the real-time application.

The instrument panel controls indicate signal and parameter values for the real-time application.
Start the real-time application, use the knob to change the parameter value, and see the affect on the
output.

Create App Designer Instrument Panels by Using Simulink Real-Time Components

When done observing the operation of the instrument panel, close the app and close the App
Designer.

See Also

Simulink Real-Time Explorer | Instrument | ConnectButton | InstrumentManager |
LoadButton | Menu | ParameterTable | ParameterTuner | SignalTable |
SimulationTimeEditField | StartStopButton | StatusBar | StopTimeEditField |
SystemLog | TETMonitor | TargetSelector | UpdateButton | slrealtime.ui.control Properties

Related Examples
. “Add App Designer App to Inverted Pendulum Model” on page 16-15

More About

. “App Building Components”
. “Manage Code in App Designer Code View”
. “Display and Filter Hierarchical Signals and Parameters” on page 7-69

14-13

14 Ssimulink Real-Time Instruments and Instrument Panel Apps

Create Standalone Instrument Panel App by Using Application
Compiler

14-14

After creating an instrument panel app to serve as an interface to your real-time application, you can
share a standalone executable instrument panel and installer with others, such as test engineers. For
more information about developing an App Designer instrument panel for your real-time application,
see “Create App Designer Instrument Panels by Using Simulink Real-Time Components” on page 14-
9.

When you share a standalone executable instrument panel and real-time application, the people with
whom you share it with must be using a target computer with the same version of RTOS software and
configuration as you used to compile the instrument panel. This workflow uses the Application
Compiler tool to package the instrument panel app.

The standalone executable application is not cross platform, and the executable type depends on the
platform (for example, Windows®) on which it was generated.

Package App by Using Application Compiler

After developing a real-time application and an App Designer instrument panel app that provides and
interface to the real-time application, you can use the Application Compiler to package the app.

Open MATLAB and set the current folder to the folder in which you are creating the standalone
executable instrument panel.

Select Apps > Application Compiler. For more information, see Application Compiler (MATLAB
Compiler).

Populate the Application Compiler dialog box with information for the application compiler project.
The image shows the example selections for project MyInstPanel slrt ex osc.prj. The compiler
settings are:

* Main file: myInstPanel slrt ex osc.mlapp

* Application Name: mylnstPanel

* Author Name: J. Doe

* Email: jdoe@mycompany.com

* Company: MyCompany

* Summary: This standalone application provides an interface to a real-time application.

* Description: This standalone application provides an interface to a real-time application.

* Default installation folder: %ProgramFiles%\MyCompany\myAppTesting\

* Do not display the Windows Command Shell (console) for execution: Yes

Your choice of whether to select Runtime downloaded or Runtime included packaging options for
the project influences the length of time for packaging and for installing the application. If the
development computer that will be running the standalone executable instrument panel has internet
access, select downloaded. If not, select included.

For Suggested Support Packages, select the Simulink Real-Time Target Support Package.

For Files required for your application to run, select the real-time application MLDATX file.

Create Standalone Instrument Panel App by Using Application Compiler

¢ Application Compiler - untitled1.prj™

o O &=

Mew Open Save

-

COMPILER

e

Settings = Package

| & myAppTesting.mlapp | =5 | o e oprions

S

Project ~
-
FILE TYPE MAIN FILE SETTINGS | PACKAGE

r

™ Runtime downloaded from web | MyAppinstaller_web

A D Ty © Runtime included in package |Myﬂpp|nstaller_mcr

' myAppTesting 1.0

1. Doe

jdoe@mycompany.com Select custom splash screen

MyCompany
Set as default contact

This standalone application provides an interface to a real-time application.

This standalone application provides an interface to a real-time application.

Suggested Support Packages
Package Product Motes
Simulink Real-Time Target Support Package Simulink Real-Time

b Additional installer options

Files required for your application to run

|# slrt_ex_osc.mldatx

Files installed for your end user

@ myfAppTesting.exe @ readme.tet @ splash.png

‘H

‘H
<

b Additional runtime settings

Note: To enable downloading a real-time application to a target computer, the name of the
application must be specified in the Load Button component of the instrument panel.

Save the Application Compiler project as myInstPanel.prj.

14-15

14 Ssimulink Real-Time Instruments and Instrument Panel Apps

In the Application Compiler dialog box, select Package. The Package status indicates completion of
the packaging stages. When completed, click Close.

The packaging process outputs folders for redistribution,
for_redistribution files only, and for_testing.

Install Instrument Panel Application

To install the instrument panel application, run the executable file from the for redistribution
folder.

On Windows

» Ifyou selected Runtime downloaded from web for the project, run installer
MyAppInstaller web.exe.

» If you selected Runtime included in package for the project, run installer MyApplInstaller mcr.exe.
On Linux

* Ifyou selected Runtime downloaded from web for the project, run installer
MyAppInstaller web.install.

* Ifyou selected Runtime included in package for the project, run installer
MyApplnstaller mcr.install.

For this example, installer executable file is MyAppInstaller mcr.exe. When run, this file installs
the MATLAB runtime and installs the instrument panel executable file:

C:\Program Files\MyCompany\MyInstPanel slrt ex osc\application\MyInstPanel slrt ex osc.exe

Tip: Make a note of the MATLAB run time path in this step. The path can be used to run the
standalone application on Linux system.

To test the standalone executable instrument panel, close MATLAB and run the
MyInstPanel slrt ex osc EXE file.

On Windows

* run the MyInstPanel slrt ex osc EXE file

On Linux

* run the command

./run_MyInstPanel slrt ex osc.sh /usr/local/MATLAB/MATLAB Runtime/v911l

Use the instrument panel to connect to the target computer by inserting the target computer IP
address (for example, 192.168.7.5) in place of the target computer name (for example, TargetPC1).
Load the real-time application, and start the application. Observe that the instrument panel provides
an interface to control the real-time application.

If you modify your real-time application or instrument panel app and repackage these, you do not
need to send the installer to your end-users. Instead, you can send them the updated EXE file from
the for redistribution files only folder to replace the EXE file in their application folder.

Note: If your system uses firewall software such as the Window Defender Firewall and you have
configured exceptions for MATLAB® to let Simulink® Real-Time™ communicate with the target

14-16

Create Standalone Instrument Panel App by Using Application Compiler

computer through the firewall, configure exceptions for your compiled application so it can
communicate with the target computer. For more information, see “Troubleshoot Communication
Failure Through Firewall (Windows)” on page 17-5.

See Also
Simulink Real-Time Explorer | Instrument

Related Examples
. “Add App Designer App to Inverted Pendulum Model” on page 16-15

More About

. “App Building Components”

. “Manage Code in App Designer Code View”

. “Display and Filter Hierarchical Signals and Parameters” on page 7-69
. Application Compiler (MATLAB Compiler)

14-17

Automated Test with Simulink Test

15 Automated Test with Simulink Test

Test Real-Time Application in Simulink Test

15-2

This example shows how to perform a frequency-response test of the model slrt _ex osc_ sltest.

Using this information, in the design phase, you can modify the internal parameters of the model to
meet your frequency requirements. In the production phase, you can bin manufactured parts based
on frequency response.

Simulink Real-Time

Simulink test

Configuration Parameters

Step 1
Set Model Configuration
Parameters

Step 2
Create Test Harness

Test Assessment Block

Step 3 Step 4
Set Test Harness Configuration Configure Test Harness
Parameters
Model Advisor
Step 6
Step 5
P Test A
Configure Simulink repare Test Assessment Steps
Parameters

Test Manager
Step 7
Initialize Test Suite

Step 8
Initialize System Under Test

Step 9
Initialize Parameter Overrides

Step 10
Create Scripted lterations

Step 11
Run Test and Display Results

Open the Model

To open the model, in the MATLAB® Command Window, type:

open_system(fullfile(matlabroot, 'toolbox','slrealtime’', 'examples', 'slrt ex osc sltest'));

Test Real-Time Application in Simulink Test

Gain
{ﬂ-&
Gain
oooo - ™ -
oo - ;
GainZ |- Sum Integrator Ei . J_LL '
Signal Gain? Integrator Integrator Outport
Generator DampedOss Zero-Order
Haold
Gain A:I =
SignalGenerat "
gnalGenerator Seope

Copyright 2020 The MathWaorks, Inc. P File Log
?

File Log

The figure shows representative output from a real-time application running on a target computer. At
low frequencies, the output of the Integratorl block settles to the same value as the output of the

Signal Generator block. At high frequencies, the output of the Integratorl block is still ringing at the
end of each pulse.

15-3

15 Automated Test with Simulink Test

J Simulation Data Inspector - untitled”

» « O K @

@ & P

Q

Inspect

Filter Signals

- Run 1: sirt_ex_osc_sltest @ Target...

DampedOsc

L4

Archive

Properties

&

Compare

Lo

W DampedOsc W SignalGenerator

15 4 ||
[

15-4

The test determines the highest frequency at which the output values of the Integrator and Signal
Generator blocks are within a specified criterion of each other. The test uses the model itself as a

signal source and uses a test harness to compare the outputs of the Integrator and Signal Generator
blocks.

Step 1. Set Model Configuration Parameters

© 0 N O U1 A W N M

Open model slrt _ex osc sltest in a writable folder.

Open the Configuration Parameters. On the Real-Time tab, click Hardware Settings.
Select Model Referencing > Total number of instances allowed per top model > One.
Select Data Import/Export > Format > Structure with time.

Select Data Import/Export > Time.

Select Data Import/Export > Output.

De-select Data Import/Export > States.

De-select Data Import/Export > Final states.

De-select Data Import/Export > Signal logging.

10 De-select Data Import/Export > Data stores.

11 De-select Data Import/Export > Log Dataset data to file.

Test Real-Time Application in Simulink Test

Step 2. Create Frequency Parameter
Create the parameter Frequency that is tuned at the end of this example.

Open model explorer.

Create a Simulink® parameter Frequency in model workspace for model
slrt_ex osc_sltest.

3 Mark the parameter as a model argument.
Step 3. Create Test Harness

On the Simulink Apps tab, click Simulink Test.

N

On the Test tab, click Add Test Harness. The software creates a test harness with the default
name slrt_ex osc_sltest Harnessl.

In the Basic Properties tab, for the Input to Component under Test, select None.
For the Output from Component under Test, select Outport.

Select the Add separate assessment block check box.

Select the Open harness after creation check box.

N 6o U1 AW

Take the defaults in the remaining tabs.

15-5

15 Automated Test with Simulink Test

Create Test Harness

Specify the properties of the test ha mess.ﬁhe component under test is the system for which the harness is
being created. After creation, use the block badge to find and open harnesses.

Component under Test: slri_ex_osc_sltest

Basic Properties ~ Advanced Properties Description

Mame: |slrt_ex_osc_sltest Harmessl

Hamesses saved internally. More information

Sources and Sinks

None v ——>| Component under Test |==="> | Qutport v

Create scalar inputs
Add scheduler for function-calls and rates: Mone -
Enable initialize, reset, and terminate ports

Add separate Test Assessment block

Open harness after creation

.‘)- Cancel Help

8. Click OK.

The example model slrt_ex osc sltest stores the test harness within the model. To access the
test harness from the example model:

1 In Simulink Editor, on the Test tab, click Manage Test Harnesses.
Click slrt_ex osc_sltest Harnessl.

3 To return to the example model, select it in the perspectives view in the lower right corner of the
test harness.

Step 4. Set Test Harness Configuration Parameters

1 Open test harness slrt_ex osc _sltest Harnessl.
2 Open the Configuration Parameters. On the Real-Time tab, click Hardware Settings.

15-6

Test Real-Time Application in Simulink Test

© 00 N O B AW

Select Model Referencing > Total number of instances allowed per top model > One.
Select Data Import/Export > Format > Structure with time.

Select Data Import/Export > Time.

Select Data Import/Export > Output.

De-select Data Import/Export > States.

De-select Data Import/Export > Final states.

De-select Data Import/Export > Signal logging.

10 De-select Data Import/Export > Data stores.
11 De-select Data Import/Export > Log Dataset data to file.

Step 5. Configure Test Harness

Open the Test Assessment block.

To simplify the test assessment configuration, in the Input symbol list, replace input Outport
with inputs Int1 and SigGen.

Inslrt_ex osc sltest Harnessl, connect a Demux block to slrt _ex osc sltest/
Outport.

In the Demux block dialog box, set Number of outputs to 2.

To make the Demux outputs visible to the Test Assessment block, connect unitary Gain blocks to
each of the Demux block outputs.

Connect the top Demux block output to Test Assessment/Intl and the bottom output to Test
Assessment/SigGen.

Step 6. Configure Simulink Parameters

1

5

Open the Model Explorer. On the Modeling tab, pull down the Design section and click Model
Explorer.

Click node slrt_ex_osc_sltest_Harness1 > Model Workspace.
In the toolbar, click the Add Simulink Parameter button.
Add the following data object:

Name — Criterion

Value — 0

DataType — double

Storage Class — ExportedGlobal

. In a similar manner, add Simulink parameters w open and w_close. Because these parameters are

inthe slrt_ex osc_sltest Harnessl model workspace as model parameters, you access them by
name directly, without model hierarchy.

15-7

15 Automated Test with Simu

link Test

B Model Explorer

File Edit WView Tools Add Help
EO 4R EHE-E-H- i
Model Hierarchy E E Contents of: ...el Workspace (and below) Filter Contents Simulink.Parameter: w_open
hd simulink Root . = Design Code Generation ~
i Column View: | Default ~ | Show Details 3 object(s)
E Base Workspace Value: |0
slrt_ex_osc_sltest
hd slrt_ex_osc_sltest_harness1 [",‘.’",] Criterion Data type: |dnuble V| =5
] Configurations BT;] w_close Dimensions: | [1 1] i complexity: | res
% Model Workspace BT;] w_open 0
;a External Data Minimum: f Maximum: [1
@ Model (slrt_ex_osc_sltest) Unit: |
Output Conversion Subsystem
¢ Test Assessment Block [argument
Description:
v
£ >
£ >
Revert Help Apply
< > Contents Search Results

6. Save the model.
Step 7. Setup Frequency Argument

Right click on slrt_ex osc_sltest Harnessl/slrt ex osc sltest.
Select Block Parameter(Model reference).
Select Instance parameters on pop out window.

A W N =

Mark Frequency as an argument.

Step 8. Prepare Test Assessment Steps

1. Open the Test Assessment block

2. Add these parameters to the Parameter symbol list:

¢ Criterion
* W open
* w close

3. To add a step, in the Step column, move the cursor to the top row, click Add step after, and type:
CheckSetting
4. Right-click step CheckSetting and set the When decomposition check box.
5. To add a substep to CheckSetting, click Add sub-step, and type:
Hi when (SigGen > 0)
The when expression selects one half of the waveform.

6. Right-click substep Hi when and set the When decomposition check box.

15-8

Test Real-Time Application in Simulink Test

7. To substep Hi when, add substep:
HiCheck when ((et >= w _open) && (et <= w close))
verify((abs(Intl) >= abs(SigGen) * (1.0 - Criterion)) && ...
(abs(Intl) <= abs(SigGen) * (1.0 + Criterion)));

The when expression selects the time window for testing the acceptance criterion. The verify
command tests the acceptance criterion.

8. In a similar manner, to step CheckSetting, add substep:
Lo when (SigGen < 0)
9. To substep Lo when, add substep:
LoCheck when ((et >= w_open) && (et <= w_close))
verify((abs(Intl) >= abs(SigGen) * (1.0 - Criterion)) && ...
(abs(Intl) <= abs(SigGen) * (1.0 + Criterion)));
10. Right-click substep Lo when and set the When decompeosition check box.

11. To satisfy the requirements of When decomposition, remove the default Run step and insert
DefaultStep substeps after steps CheckSetting, Hi when, and Lo when. When decomposition
requires at least two steps at each level of nesting, and one nondecomposed step at the end of each
list of steps.

Transition Next Step Description
B CheckSetting
B Hi when (SigGen = 0) Selects half
of waveform
HiCheck when ((et >=w_open) && (et <= w_close)) Selects time window
verify((abs(Int1) >= abs(SigGen) * (1.0 - Criterion)) && .. Tests acceptance
(abs(Int1) <= abs(SigGen) * (1.0 + Criterion))); criterion
DefaultStep 1 Required for

‘when decomposition’

=™ Lo when (SigGen < 0)

LoCheck when ((et >= w_open) && (et <= w_close))
verify((abs(Int1) >= abs(SigGen) * (1.0 - Criterion)) && ..
(abs(Int1) <= abs(SigGen) * (1.0 + Criterion)));

DefaultStep 2

DefaultStep

Step 9. Initialize Test Suite

1 Clickonthe slrt ex osc sltest subsystem.

15-9

15 Automated Test with Simulink Test

15-10

On the Apps tab, click Simulink Test.

On the Test tab, click Test Manager.

Select New > Test File.

Name the test file realtimetest.

Right-click the test file and select New > Real-Time Test.

In the new real-time test dialog box, enter Simulation in the Test Type field.
Click Create.

Rename the new test suite to realtimesuite.

© 0O N O U A W N

10 Rename the new test case to frequencysweep.
Step 10. Initialize System Under Test

In Test Manager, select node frequencysweep.

Select tab System Under Test.

Set Model to slrt_ex osc sltest.

In tab Test Harness, set Harness to slrt_ex osc_sltest Harnessl.

In tab Simulation Settings and Release Overrides, select the Stop Time check box.
Take the defaults for the other fields.

O U A W N M

Step 11. Initialize Parameter Overrides
1. In Test Manager, select tab Parameter Overrides.

2. Click the Add button. A dialog box opens containing a list of parameters. If parameters are not
visible, click the Refresh line at the top of the dialog box.

c

The refresh builds the model and uploads the model and block parameters from
slrt_ex osc_sltest Harnesslandslrt ex osc sltest.

3. Open Parameter Set 1 and select the Criterion, Frequency, w_close, and w_open check boxes.
Leave the other check boxes cleared.

Step 12. Create Scripted Iterations

To configure and control iterated runs of the test harness, a number of constants and variables
provide input.

Test harness constants include:

* cStartFreq = 15.0 Start frequency of parameter sweep.
* cStopFreq
* cFreqlncr

25.0 End frequency of parameter sweep.

1.0 Frequency increment.
* cWOpen = 0.90 Start of time window for evaluating criterion.
* cWClose = 0.99 End of time window for evaluating criterion.

* cCriterion = 0.025 Maximum normalized amplitude difference between Signal Generator and
Integratorl within the time window.

Test Real-Time Application in Simulink Test

Test harness variables include:

vfreq Frequency at each iteration.

vw_open Window opens once in each half-period.
* vw_close Window closes once in each half-period.

[

In Test Manager, select tab Iterations > Scripted Iterations.

N

In the text box, enter the following code. To resize the Scripted Iterations text box, click and
drag the lower-right corner of the box.

% Initialize constants
cStartFreq = 15.0;
cStopFreq 25.0;
cFreqIncr 5.0;
cWOpen = 0.90;
cWClose = 0.99;
cCriterion = 0.025;
% Loop through test frequencies
for vfreq = cStartFreq:cFregIncr:cStopFreq
% Create a new iteration
testItr = sltest.testmanager.TestIteration();
% Calculate the time window
half period = 0.5 * (1.0/vfreq);
vw_open = half period * cWOpen;
vw_close = half period * cWClose;
% Set the parameters for the iteration
testItr.setVariable('Name', 'Frequency', 'Source',
'slrt _ex osc sltest', 'Value',vfreq);
testItr.setVariable('Name','w open', 'Source',
"', 'Value', vw open);
testItr.setVariable('Name','w close', 'Source',
"', 'Value', vw close);
testItr.setVariable('Name', 'Criterion', 'Source’,
"', 'Value', cCriterion);
% Name and add the iteration to the testcase
str = sprintf('%.0f Hz', vfreq);
addIteration(sltest testCase, testItr, str);
end

Step 13. Run Test

Build and download slrt_ex osc_sltest to the target computer.
In Test Manager, click the Run button.

To view test results, in the left column, click Results and Artifacts. In this case, the test failed
at iteration 23 Hz.

4 To view the failing results, open nodes 23 Hz > Verify Statements and 23 Hz > Sim Output
(slrt_ex_osc_sltest).
Step 14. Display Results

In the Simulation Data Inspector pane, select the Layout button.
Select two horizontal displays.

In the Simulation Data Inspector top display, select the two Qut check boxes and the top Test
Assessment check box. This assessment corresponds to the HiCheck substep.

15-11

15 Automated Test with Simulink Test

15-12

4 In the bottom display, select the two Out check boxes and the bottom Test Assessment check
box. This assessment corresponds to the LoCheck substep.

5 Click the Zoom in Time button and select the range 4.00-4.1.

In the top display, the vertical red line near 4. 04 followed by a horizontal green line shows that the
HiCheck test failed briefly before succeeding. In the bottom display, the vertical red spike near 4.02
followed by a horizontal green line shows that the LoCheck test failed briefly before succeeding.

See Also
Test Assessment | Test Sequence

More About
. “Test Models in Real Time” (Simulink Test)
. “Reuse Desktop Test Cases for Real-Time Testing” (Simulink Test)

Examples

13

Simulink Real-Time Examples

16 simulink Real-Time Examples

Tune Decimation for File Log Data Without Model Rebuild

16-2

This example shows how to tune the decimation parameter on the File Log blocks in a real-time
application without rebuilding the model. The Application object methods
getAllFileLogBlocks, getFileLogDecimation, and setFileLogDecimation are used to
change the decimation value for the application MLDATX file. The application can be run again on the
target computer to observe the updated decimation of the signals connected to File Log blocks in the
model.

Open, Build, and Download Model

Open the model slrt_ex filelogtunabledecimation>. This model uses File Log blocks to log
data on the target computer. The default setting for decimation is set to 1 for the File Log blocks. In
the MATLAB Command Window, type:

model = 'slrt ex filelogtunabledecimation';
open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples',model));

File L
{\‘) Analog Inpaut te e

Analog input

h

Subsysten FileLog

Caopyright 2022 The MathWorks, Inc.

Build the top model and download to the target computer.

* Configure for a non-Verbose build.

* Build and download application.

set param(model, 'RTWVerbose', 'off");
set param(model, 'StopTime','5");
evalc('slbuild(model)"');

tg = slrealtime;

load(tg,model);

Close the model

bdclose(model) ;

Run Real-Time Application

Run the real-time application on the target computer. Wait for the application to stop.

start(tg);
pause(7);

Tune Decimation for File Log Data Without Model Rebuild

View Signals in the Simulation Data Inspector

Simulink.sdi.view;

W Analog Input ® Lap Counter

| | | |
Sy SRR N NRR R By
R R R
IR RN IRER N INRR

SRR AR SRR N AR

Set File Log Block Decimation
Set the File Log block decimation for the blocks to the same value by using the Application object.

Create the Application object.

app0Obj = slrealtime.Application(model);
Get the File Log blocks in the application by using the getAl1FileLogBlocks function.

16-3

16 simulink Real-Time Examples

fileLogBlocks = appObj.getAllFileLogBlocks;

Get the File Log decimation setting for the blocks by using the getFileLogDecimation function.
The setting is 1 for both blocks.

oldDecimation = appObj.getFileLogDecimation(fileLogBlocks)

oldDecimation =

1

Change the decimation for both blocks to 5 by using the setFilelLogDecimation function.
appObj.setFileLogDecimation(fileLogBlocks, 5);
Confirm the new decimation value is set to 5.

newDecimation = appObj.getFileLogDecimation(fileLogBlocks)

newDecimation

5

Reload Application on Target Computer and Rerun
load(tg,model);

start(tg);

pause(7);

View New Signals in the Simulation Data Inspector

Simulink.sdi.view;

16-4

Tune Decimation for File Log Data Without Model Rebuild

m Analog Input ® Lap Counter
23

A k i A A
/\ /\ I\ /\ /\
1. . o P .
F m i Im L
i R ; R ; 1 ; 1 ; 1
BUBEIRUROLBRIRDLBARNIAOURITNIAOURISHIN
'lll ll' 'lll | 'lll I||| l'\ I"l l'\ ll'
S O RRRANER ST SRR o
\/ \f \f \f y
| | y | y

Set File Log Block Decimation

Set the File Log block decimation for blocks to different values by using the Application object.
Create the Application object

app0Obj = slrealtime.Application(model);
Get the File Log blocks in the application by using the getAl1FileLogBlocks function.
fileLogBlocks = appObj.getAllFileLogBlocks;

Get the File Log decimation setting for the blocks by using the getFileLogDecimation function.
The setting is 1 for both blocks.

16-5

16 simulink Real-Time Examples

oldDecimation app0Obj.getFileLogDecimation(fileLogBlocks)

oldDecimation

5

Change the decimation for both blocks to 5 by using the setFileLogDecimation function.
appObj.setFileLogDecimation(fileLogBlocks, [1 21);
Confirm the new decimation value is set to 5.

newDecimation = appObj.getFileLogDecimation(fileLogBlocks)

newDecimation =

1
2

Reload Real-Time Application and Rerun
load(tg,model);

start(tg);

pause(7);

View Signals in the Simulation Data Inspector

Simulink.sdi.view;

16-6

Tune Decimation for File Log Data Without Model Rebuild

a3

30

27

z4

21

oe

08

03

03

08

08

m Analog Input ® Lap Counter

0.4

08

0.8

20

22

z4

28

e

a0

32

34

kX3

4.0

44

45

48

5.0

16-7

16 simulink Real-Time Examples

Concurrent Execution on Simulink Real-Time

This example shows how to apply explicit partitioning to enhance concurrent execution of a real-time
application that you generate by using Simulink® Real-Time™.

Simulink Real-Time supports concurrent execution by using implicit partitioning or explicit
partitioning of models. This example shows the relationship between the explicit partitioning of the
tasks in the model subsystems and the execution of tasks by using the Simulink Real-Time profiling
tool.

Note: You can also use the Simulink® Schedule Editor to partition the model. In the Simulink Editor,
click the Modeling tab and select Design > Schedule Editor. For more information, see “Create
Partitions from a Rate-Based Model”.

The example model slrt_ex mds and tasks runs at sample rate of 0.001 second.

To run the model with adjusted sample rate of 0.01 second, change the sample rated before running
the example. In the MATLAB Command Window, type:

Ts = 0.01;
Open, Build, and Download the Model

The explicit partitioning in the top-level model occurs in subsystem1.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', '"examples', 'slrt ex mds subsysteml'));

16-8

Concurrent Execution on Simulink Real-Time

unity math max Ermor

unity math max Ermror

y
|
|
:

unity math max Emror?

|

Caopyright 2020 The MathWorks, Inc.

The explicit partitioning in the top-level model occurs in subsystem?2.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’', "examples', 'slrt ex mds subsystem2'));

16-9

16 simulink Real-Time Examples

[1:700] —rD b (- — ()
unity math max Ermor
(1) ;% > 1 —I-II; J—— —(2)
umity math1 max Errori
reo00] f—afi s i
umity mathi2 | max Errors

Copyright 2020 The MathWorks, Inc.

Open the model slrt_ex mds and tasks. The model is mapped to seven threads: Modell R1,
Modell R2, Modell R3, Modell R4, Model2 R1, Model2 R3, and Model2 R4.
These threads run at sample rates of Ts, 2*Ts, 3*Ts, 4*Ts, Ts, 3*Ts, and 4*Ts.

model="slrt ex mds and tasks';
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, "examples',model));

16-10

Concurrent Execution on Simulink Real-Time

Concurrent Execution on Simulink Real-Time
lllustrated by Profiling Tool

ol el]
slrt_ex_mds_subsystem1 il
Cut! p—————=—] slrt_ex_mds_subsystem2

Out! f———m—]

outz f———»—

I Out? f——w—]

Outd p——p—]
Cutd ——#—]

Crutd

Copyright 2020-2021 The MathWarks, Inc.

To apply explicit partitioning, in the Simulink Editor, on the Real-Time tab, click Hardware
Settings, and then select Solver > Configure Tasks. Select the Tasks and Mapping node.

16-11

16 simulink Real-Time Examples

Concurrent Execution: slt_ex_mds_and_tasks (Active) —
Ld 0
Select: Map blocks to tasks
v Concurrent Execution
E Data Transfer Refresh mapping table (*invokes update diagram)
hd @ Tasks and Mapping
v] cPu . —
S . Perindic lame riggerType | Period | Autogenerated
@ System tasks ¥
(‘g}) Profile report . Periodic:Modell_R1 Periodic Ts No
. Periodic:Modell_R2 Periodic 2*Ts No
. Periodic:Modell_R3 Periodic 3*Ts No
. Pericdic:Modell_R4 Periodic 4*Ts No
¥ Block: Model2
. Periodic:Model2_R1 Periodic Ts No
. Periodic:Model2_R3 Periodic 3*Ts No
E Periodic:Model2_R4 Periodic 4*Ts No
£ >

Build, download, and run the model.

set param(model, 'RTWVerbose', 'off');
evalc('slbuild(model)"');

tg = slrealtime;

load(tg,model);

% Open TET Monitor

slrtTETMonitor;

% Start profiler on the target computer
startProfiler(tg);

start(tg);

pause(2);

stop(tg);

Display Profiling Data
The profiling data shows the execution time of each thread on a multi-core target computer.

profData = tg.getProfilerData;
profData.plot;

Processing data on target computer ...
Transferring data from target computer

16-12

Concurrent Execution on Simulink Real-Time

Processing data on host computer

View TET Information in TET monitor

Simulink Real-Time Explorer

TargetPC1 E’ D Stop Time ﬁ EE EE
R Connected Load Application Stop ETy Data TET Import
- Inspector Manitor File Log
COMMECT TO TARGET COMPUTER PREPARE RUMN OM TARGET REVIEW RESULTS a
¥ Targets Tree Q Signals Parameters Target Configuration System Log Viewer TET Monitor Q

« Target Computers

e + T tPC1
|i| - B TargetPC1 (default) arge

4 siit_ex_mds_and_{a|
+‘ Model1_R1 (0.001s)

Model2_R1 (0.001s)

Model1_R2 (0.002s)
4 3

¥ Application Tree Q
Model1_R3 (0.003s)

- sirt_ex_mds_and_tasks
v [Fa] Model1 (sirt_ex_mds_subsy
v [Fa] Model2 (sirt_ex_mds_subsy

A a & —

Model2_R3 (0.003s)

Model1_R4 (0.004s)

ﬁ Model2_R4 (0.004s)

4 L4 25% 50% 5% 100%:

14 RUNMING: sirt_ex_mds_and_tasks T=2 435

16-13

16 simulink Real-Time Examples

View TET Information in the Simulation Data Inspector

Simulation Data Inspector - untitled™

< ™ am N - — — A
Q @ [,"LJ|||" ‘Q (=] h“z I O i =
Inspect Compare M Task: Model1_R1[0.001 0] Task: Model2_R1 [0.001 0] = Task: Model1_R2 [0.002 0]
Filter Signals - W Task Model1_R3[0.003 0] m Task: Model2_R3 [0.003 0] m Task: Model1_R4 [0.004 0]
| e e
. % notActive
~ Run 1: sirt_ex_mds_a... - 0 2.00e+7 4.00e+7 6.00e+7 8.00e+7 1.00e+8 1.20=+8 1.40e+3 160e+8 1.80e+3 2.00e+8 220e+82.40s+8
. v| Task Mod... Task: Model2_R1 [0.001 0]
o Task: Mod. .
s Task: Mod... | e—
E 7/ Task Mod 0 200e+7 4.00e+7 6.00e+7 8.00e+7 1.00+8 1.20e+8 1.40e+3 1.60=+8 1.80=+8 2.00e+8 2.20e+32.40e+5
o Task Mod. . — W Task: Model1_R2 [0.002 0]
\L s Task: Mod... | —
A O T O T T
_ 0 2.00e+7 4.00e+7 6.00e+7 8.00e+7 1.00e+3 1.20e+3 1.40e+3 1.60e+3 1.80e+3 2.00e+8 2.20e+32.40e+5
» core 1 M Task: Model1_R3 [0.003 0]
ask: Model_| L
I—' Core 2 —
Core 3 —
E Core 4 — 0 200247 4.00e+7 B.00=+7 8.00=+7 1.00e+3 1.20e+8 1.402+3 1.502+8 1.80=+8 2.002+8 2.20e+32.402+8
Usage Cor... ———— M Task: Model2_R3 [0.003 0]
¢ Usage Cor... | ——
Usage Cor... — ee— I , T , T T , T , T , T .
0 200e+7 4.00e+7 6.00e+7 B.00e+7 1.00e+d 1.20e+8 1.40e+d 1.60e+3 1.80e+d 200e+d 2 20e+32 40e+8
@ Usage Cor... — ————
W Task: Model1_R4 [0.004 0]
0 2.00e+7 4.00e+7 6.00e+7 B.00e+7 1.00e+d 1.20e+3 1.40e+d 1.60e+3 1.80e+d 2.00e+d 2 20e+32 40e+8
W Task: Model2_R4 [0.004 0]
Achive > [Y N I A I A
0 2.00e+7 4.00e+7 6.00e+7 8.00e+7 1.00e+3 1.20e+3 1.40e+3 1.60e+3 1.80e+3 2.00e+8 2.20e+32.40e+5
Properties ~
See Also

For more information, see:

* “Generate Subsystem Code as Separate Function and Files”

* “Generate Code and Executables for Individual Subsystems”

* “Generate Inlined Subsystem Code”

* “Generate Subsystem Code as Separate Function and Files”

* “Generate Reusable Code from Library Subsystems Shared Across Models”

Close the Model

bdclose('all');

16-14

Add App Designer App to Inverted Pendulum Model

Add App Designer App to Inverted Pendulum Model

This example shows how to stream signal signals to an App Designer instrument panel app from a
Simulink® Real-Time™ application. The example builds the real-time application from the model
slrt_ex pendulum_ 100Hz. The instrument panel contains these App Designer components:

» Target selector dropdown list — To show all the available target computers.

* Connect/disconnect button — To connect or disconnect the target computer chosen in the drop
down window.

* Load button — To load the application to the target computer.
» Start/stop button — To start or stop the application on the target computer.

* Stop time edit field — To display and set the stop time of the application loaded on the target
computer.

» Status message box — To display target computer status information.

* Axes — To display an animation for the two inverted pendulum and cart system.

* Axes — To display signal output for responses to disrupting the pendulum.

* Nudge cart button — To apply input (nudge) to the cart that hold the pendulum.

» Reference position knob — To change the reference position of the pendulum and cart system.

* Reference variation pattern knob — To add a variation pattern to the reference position of the
pendulum and cart system.

* Amplitude slider — To adjust the amplitude of the chosen reference variation pattern.
» Frequency slider — To modify the frequency of the chosen reference variation pattern.

To stream signal and parameter data between the real-time application and the instrument panel app,
the app uses the instrumentation object.

Open Example and Load Model
openExample('SlrtAddAppDesignerAppToInvertedPendulumModelExample');
load system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples','slrt ex pendulum 100Hz'));

Start Target Computer and Build Real-Time Application

These tasks generate the real-time application that streams data to the App Designer instrument
panel app.

1 Start the target computer.

2 Openthe model slrt_ex pendulum 100Hz.

3 Connect the development computer to the target computer. Build the
slrt_ex _pendulum_100Hz model.

4 Deploy the real-time application to the target computer.

In the MATLAB® Command Window, type:
model = 'slrt ex pendulum 100Hz';

set param(model, 'RTWVerbose', 'off');
tg = slrealtime;

16-15

16 simulink Real-Time Examples

16-16

evalc('slbuild(model)"');
load(tg,model);

Run App Designer Instrument Panel App

The App Designer instrument panel app slrt_ex pendulumApp provides controls to start and
interact with the real-time application slrt_ex pendulum_ 100Hz.

1. Run the app. To start the App Designer app slrt_ex pendulumApp.mlapp and create the handle
app, in the MATLAB Command Window, type:

app = slrt_ex_pendulumApp;

2. To connect with an available target computer, click the connect button. The text on the button will
switch to 'disconnect' and the load button will be enabled.

3. To load the application to the target computer, click the load button. After the application is loaded
on the target computer, the start button and stop time edit field will be enabled.

4. To set the stop time of the application, type your preferred stop time in the edit field and hit enter
button.

5. To start running the application, click the start button.

6. To disrupt the equilibrium of the pendulum on each cart, click the Nudge button. You can adjust
the nudge magnitude by using the value selection next to the button, hange the reference position by
adjusting the value of reference position spinner, or choose a variation pattern for the reference
position.

Add App Designer App to Inverted Pendulum Model

MATLAB App
Target Computer ! I |:> Stop Time St&ﬁpiﬁg model siri_ex_osc at 16.3635s -
R Connected Loading model sirt_ex_pendulum_100Hz
TargetPC1 ‘ v | Load Application Start 80| | Ready to start
- Pendulum Line Plot . Animation
reference
cartposition
pendposition 2F
0.8}
5 -
06}
4+
04r
2 -
02t
0 /\
0 * 2
0 02 04 0.6 0.8 1 -5 0 5 10 15
Time (s) X
4_5 5 5_5 _02 0 02 S S [RRRINRNE IIIIIIIII|IIIIIIIII|IIIIIIIII [ARINRR RN
T ST ine quare n : 3 4 c
4 4V 6 04 4V - 04 ‘s
It | [i 4 a Amplitude
\ . W A Offs— = Saw
15" ol 6.5 06 WV 06 _
3 o ? -’DE) DB IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII
Reference Position | Nudge Cart Reference Variation Pattern Frequency (rad/s)
LOADED: siri_ex_pendulum_100Hz

App Callback Code

The instrument panel app functionality is provided by callback code.

Comments in the callback code in the instrument panel app slrt_ex pendulumApp.mlapp describe
the callback operations and programming suggestions. To view the callback code, open

slrt_ex_ pendulumApp.mlapp in the App Designer, and then click the Code View tab. In the
Command Window, type:

edit slrt _ex pendulumApp

Specify Block Paths for Signals

To stream data from signals in the model, see the use of connectLine functions in the
setupInstrumentation(app) function in the app.

updateAnimationCallback Function

For each AcquireGroup, this function checks whether there is fresh data since the last time the
callback was called. If there is data, the function updates the animation objects.

16-17

16 simulink Real-Time Examples

Signals are placed in Acquire Groups based on sample rate and decimation such that all signals in an
Acquire Group have the same time vector.

Update Axes and Animation by Using Acquire Groups

In the callback code, this processing is visible as AcquireGroupData signal groups in the
updateAnimationCallback function.

Close the App and Models

The instrument panel app handle app provides access to close the app.
Close the app. In the MATLAB Command Window, type:
close(app.UIFigure)

Close the open models. In the Command Window, type:

bdclose ('all');

16-18

Basic App Designer App for Real-Time Application Interface

Basic App Designer App for Real-Time Application Interface

This example shows a basic App Designer app that provides an interface to a real-time application.
Open Model and Build Real-Time Application

Open the model slrt_ex waves and build the real-time application.
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’', 'examples', 'slrt ex sine waves'));

model="'slrt ex sine waves';
evalc('slbuild(model)"');

i

J

Y

Y

sim

Model slrt_ex_sine_wavas
Simulink Real-Time sxample model

?
Caopyright 2021 The Math\Works, Inc.

Open Real-Time Application Interface App

Open the real-time application interface app slrt sine waves App.

16-19

16 simulink Real-Time Examples

MATLAB App
|R Connected | » 4 8
‘Targeth v | |LoadApplica Stop 2., |8

_EX_5ine_wa 0 10
Amplitude
= Signal Generator
11 —
’f--" o,
05
=
Lk
=
2 0r
£
05
1 L
_15 i i i i i i i i i i
58 59 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7
Time [5]

Control Run Real-Time Application

Use the App Designer app controls to:

* Select the target computer by using the target selector list.

* Toggle from Disconnected to Connected by using the connect button.
* Load the real-time application by using the load button.

» Start the real-time application by using the start button.

When done, stop the application by using the stop button.

16-20

Basic App Designer App for Real-Time Application Interface

Examing Code View for Interface App

In App Designer, click the Code View tab to view the code that connects the real-time application to

the App Designer app. This code that executes after the app creates components uses a small number
of Simulink® Real-Time™ functions to:

* Create and configure the tuner component
* Create and configure the instrument component
+ Start the instrument manager for the app

function startupFcn(app)
% Add Parameter Tuner Component
Tuner = slrealtime.ui.tool.ParameterTuner(app.UIFigure);
Tuner.Component = app.AmplitudeKnob;
Tuner.BlockPath = 'slrt ex sine waves/Sine Wave';
Tuner.ParameterName = 'Amplitude’;

% Add Instrument Component
Instrument = slrealtime.Instrument;
Instrument.connectLine(app.UIAxes, 'slrt _ex sine waves/Sine Wave',1);

Instrument.AxesTimeSpan = 1;
InstrumentManager = slrealtime.ui.tool.InstrumentManager(app.UIFigure);
InstrumentManager.Instruments = Instrument;

end

Close All Open Files

bdclose('all');

16-21

16 simulink Real-Time Examples

Create and Update Instrument Panel for Stateflow Car
Transmission

This example shows how to generate an App Designer instrument panel for a Simulink® Real-Time™
model, then update the instrument panel by adding controls for more signals. Use this example to
follow the iterative process of developing an instrument panel by using the Simulink Real-Time App
Generator and App Designer.

Build and Load the Real-Time Application

Open the slrt _ex sf car model and load the external data for the model. Build and load the real-
time application.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex sf car'))

load(fullfile(matlabroot, 'toolbox', 'slrealtime',
'examples', 'slrt ex user inputs.mat'),'-mat')

evalc('slbuild(''slrt ex sf car'')"');
tg = slrealtime;
load(tg, 'slrt ex sf car');

mpeller torque Choose Start from
the Simulation menu
Ti to run the simulation.
Ne + - Me
»| throttle engine RPM T
|-
Engine ’
2 —
Passing_Maneuver o L output torgue
Brake — o ETCEL 5
- Vetile
@ Throttle _D"‘ALC T transmiseion spesd
down_th k)
User Inputs = i
Double-click to shift logic i
1
open the GUI v
and select an » —
input maneuver —
— wahicle mph
(yallow)
Threshold Calculation & throftle %
.
L5
[

Copyright 2008-2022 The MathWarks, Inc.
= .

This example loads the real-time application on the target computer. But, you do not have to have a
real-time application loaded on the target computer to use the Simulink Real-Time App Generator to

generate an instrument panel app.
Open Simulink Real-Time App Generator and Configure Controls

As described in Simulink Real-Time App Generator, you can start creating an App Designer
instrument panel from the real-time application MLDATX file.

16-22

Create and Update Instrument Panel for Stateflow Car Transmission

1 Open the Simulink Real-Time App Generator by using the command s1rtAppGenerator in the
Command Window.

2 Select New > New. Then, select the real-time application MLDATX file
slrt_ex sf car.mldatx.

3 Click the Options button. Disable the Instrumented Signals and Use Grid Layout options.
Leave the Toolstrip and Status Bar options enabled (default setting). Set the App name for the
instrument panel title bar to Stateflow Car Instrument Panel.

4 To display the car transmission gear selection on the generated instrument panel, in the Signals
And Parameters pane, select the shift logic: 1 signal from the slrt ex sf car group
and use the Add button to add four instances of this signal to the Bindings tab.

5 Select the four shift logic: 1 rows in the Bindings tab and select Mass Edit > Change
control type > Lamp to select the control type to Lamp for these signals.

6 Select the top shift logic: 1 signal in the Bindings tab. In the Properties panel, the
Control Name is set to shift logic 1. In Lamp Options, add a Target Value and set the
value to 1 to match the gear number. Set the Lamp Color for the added value to green.

7 Repeat this process for the control name, lamp control value, and lamp color of the other
shift logic: 1 signals, setting their control names to shift logic 2, shift logic 3,
and shift logic_ 4. Set their control values to 2, 3, and 4.

8 To display the transmission speed in revolutions per minute (RPM) in the generated instrument

panel, in the Signals and Parameters panel, select the transmission speed signal from the
Named Signals group and use the Add button to add this signal to the Bindings tab.

9 Select the transmission speed row in the Bindings tab. In the Property panel, click on the
cog icon to open the Property Inspector. Configure the Gauge control for Limits of 0. .6000
and set the MajorTicks and MajorTickLabels to 0, 1000, 2000, 3000, 4000, 5000, and 6000.

The figure shows the App Generator configuration after applying these settings.

16-23

16 simulink Real-Time Examples

o E © I X |«
New Open Save Options Add From Highlight Remove Validate p,;\jg__ HELP
- - - b Maodel in Model - -
FILE CONFIGURE BINDING
Signals and Parameters Bindings Signal
Q | Source Control Name Control Type Block P ‘ slrt_ex_sf_can'shiﬂ_logi|
b Options - | shiit_logic:1 shift_logic_1 Lamp Port Ind ‘ 1 |
[se] TVEC a = | shift_logic:1 shift_logic_2 Lamp
[lol] downth Signal ... ‘ |
o -+ | shift_logic:1 shift_logic_3 Lamp
[s:] nevec : — : :
== | shift_logic:1 shift_logic_4 Lamp
- (83 Named Signals - |transmission speed | fransmission_speed | Gauge Contral

= impeller torqus
= output torque
= output torque
—t= transmission s
~t= turbine torque
~t= vehicle speed
- sirt_ex_sf_car

b Engine

v [Ba] Threshold Cal

v [Ba] venicle

b [Pa] transmission
= Engine:1
~= Threshold Cal
~t= Threshold Cal
== User Inputs:1
= User Inputs:2

-+— uchirla cnood

3

Save Generator Session and Generate Instrument Panel App

Control __| shift_logic_4 |
|

Control .. [Lamp A

Propert... ‘ |

(o
Options
Bus Ele... I:I

Array In... ‘ |

Decima. .. ‘ |

Callback ‘ |

OUTPUT

Lamp Options
Targ...

Lam...
C](— = [und...
@€ ¢

|

ki

Because instrument panel development is an iterative process, it is useful to save your App Generator
session as a MAT file. This operation lets you load the session into the App Generator and resume

editing the a

PD.

1 Inthe App Generator, click the Save button and select a MAT file name for the saved session. If
you need to resume editing the app generation, you can use the Open button to open this MAT

file.

2 To generate the instrument panel MLAPP file, click the Generate App button. Enter

slrt _ex sf car_InstrumentPanel as the MLAPP file name.

3 After generating the app, select Open in App Designer from the Success dialog box.

This figure shows the initial layout of the instrument panel in App Designer.

16-24

Create and Update Instrument Panel for Stateflow Car Transmission

i
Targe§7(31 ‘ L | j |> Stop Time

Load Application Start 10

|n Connected |

Signals and Parameters -+

UMNLOADED T=0

Edit Instrument Panel App and Add More Controls

After adjusting the layout of instrument panel controls in the App Designer and adding labels for the
controls, the instrument panel is easier to use. See figure.

16-25

16 simulink Real-Time Examples

Stateflow Car Instrument Panel

TargetPC1

Starting model slrf_ex_sf_car

SopTMe | JET 0avg: 1723606 min: 1142606 max: 2.005¢-08

R D>

[n Connected

10 Stopping model sirf_ex_sf_car at 10s
Loading model sirt_ex_sf_car

Ready to start

Load Application Start

]

Signals and Parameters

O_\

~ ©
-~ ©®

Gears

LOADED: sIrt_ex_sT_car

Ow

\

This edited layout lets the instrument panel user observe the transmission gear state from the
illuminated Lamp control and observe the transmission RPM from the Gauge control.

To make this instrument panel more informative, you can add additional controls, such as a Gauge for
the vehicle speed in miles per hour (MPH) and Edit boxes to display or edit the initial conditions for
the simulation scenario. The conditions provide the tunable parameters for the simulation. These
parameters, which have their initial values set by the external data in the slrt_ex user inputs
MAT file, include:

Final drive ratio Rfd -- set by vehicledata(1)

Drag friction at wheels rload0 -- set by vehicledata(2)
Aerodynamic drag rload?2 -- set by vehicledata(3)
Wheel radius Rw -- set by vehicledata(4)

Vehicle inertia Iv -- set by vehicledata(5)

Save the app and close App Designer. Close the App Generator session if it is still open.

16-26

Create and Update Instrument Panel for Stateflow Car Transmission

1 Open the Simulink Real-Time App Generator by using the command s1rtAppGenerator in the
Command Window.

2 Select New > New. Then, select the real-time application MLDATX file
slrt_ex sf car.mldatx.

3 To display the vehicle speed in miles per hour (MPH) in the generated instrument panel, in the
Signals and Parameters pane, select the vehicle speed signal from the Named Signals
group and use the Add button to add this signal to the Bindings tab.

4 Select the vehicle speed row in the Bindings tab. In the Property panel, click on the cog
icon to open the Property Inspector and configure the Gauge control for Limits of 0. . 140. To
add this control to the instrument panel, click the Add to App button and select the MLAPP file
for the instrument panel. Click OK to remain in the App Generator. The App Generator adds the
controls and ParameterTuner code for each control.

5 To display the tunable parameters for initial conditions of the simulation, in the Signals And
Parameters pane, select the vehicledata parameter from the Model and External Data
group and use the Add button to add five instances of this signal to the Bindings tab.

6 Select the five vehicledata rows in the Bindings tab. Select Mass Edit > Change control
type > Parameter Table to add a parameter table control for these signals. Select Mass Edit >
Change control name and set the name to vehicledata for these controls. To add these
controls to the instrument panel, select the five rows and click the Add to App button and select
the MLAPP file for the instrument panel. Click OK to remain in the App Generator.

7 Select the top vehicledata row in the Bindings tab. In the Properties panel, in the Options
pane, set the Element field value to (1). This change makes the top row of the generated
parameter table display element 1 of the vehicledata array. This value is the final drive ratio
Rfd. Repeat this operation for the other four vehicledata rows, setting these to (2), (3), (4),
and (5).

The figure shows the final instrument panel after adjusting the layout for the added controls and

inserting labels. When you run the instrument panel app
slrt ex sf car InstrumentPanel.mlapp, the parameter table appears as shown in the figure.

16-27

16 simulink Real-Time Examples

Stateflow Car Instrument Panel

] Stop Time Starting model slrf_ex_sf_car -
TargetPC1 v | SJ |> TET 0 avg: 1.723e-06 min: 1.142e-08 max: 3.0052-08
: Stopping model sirt_ex_sf_car at 10s
[n Connected] Load Application Start Loading model sirt_ex_sf_car
Ready to start

Signals and Parameters

1 3
- | \
| \
| |
[|
| |
\ /
® @ \ ’
2 4
Gears
Block Path Parameter Value Type Size
final drive ratio (Rfd) vehicledata(1) 323 double 11
drag friction at wheels (rloadd). vehicledata(2) 40 double 11
aerodynamic drag (rlead2) vehicledata(3) 0.02 double 1x1
wheel radius (RW) . - « - « - - . vehicledata(4) 1 double 1x1
))) vehicledata(5) 12.0041478573125 | double 1x1
wehicle inertia {(IV). « « &« « = =

LOADED: sIrt_ex_sT_car

Possible Next Steps

Inthe slrt _ex sf car model, you can choose from among different simulation scenarios by setting
a block parameter for the User Input block. The scenarios include:

* Passing Maneuver (default)

* Coasting

* Hard braking

* Gradual Acceleration

Some possible next steps for working with the model, real-time applications, and instrument panel
include:

* Try choosing other simulation scenarios, build multiple versions of the real-time application, and
use the instrument panel to load and run these simulations.

* Try using the parameter table in the instrument panel to adjust the initial conditions and re-run
the simulation.

16-28

Create and Update Instrument Panel for Stateflow Car Transmission

Deploy Standalone Executable App Designer Instrument Panel

From your App Designer instrument panel, you can compile a standalone executable instrument
panel. For more information, see “Create Standalone Instrument Panel App by Using Application
Compiler” on page 14-14.

Close App and Model

After exploring the App Designer instrument panel app and model, close all open files. In the
Command Window, type:

bdclose('all');

16-29

16 simulink Real-Time Examples

Connect Triggered Subsystem by Using Thread Trigger

This example shows how to connect the Thread Trigger block and create a triggered subsystem. This
not-often-used approach lets you use conditions in the model to trigger tasks instead of by using the

much more typical approach of using a hardware interrupt from an I/O device in the target computer
to trigger tasks.

To open this model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', '"examples', 'slrt ex thread trigger fc sub:

| double _"rI C]
it - Function Call
111 ——® boolean P|IT Thrcad Trigger F
t1 Thread E

r

function{}
Function Call 1 —]
1111 W boolean Thread Trigger F .

—

Func 1

t3 Thread

M r

J ! functioni)]

I 1 [[

vy | b —
[[

o Func 2 RT
.

Copyright 2020 The MathWorks, Inc.

See Also

* Thread Trigger

* Function-Call Subsystem

» Triggered Subsystem

* “About RTOS Tasks and Priorities”
+ “Execution Modes” on page 8-2

16-30

EtherCAT Protocol with Beckhoff Analog 10 Subordinate Devices EL3062 and EL4002

EtherCAT Protocol with Beckhoff Analog 10 Subordinate
Devices EL3062 and EL4002

This example shows how to communicate with EtherCAT® devices using the Beckhoff® analog I/O
terminals EL3062 and EL4002.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
Main device and two analog input/output terminals EL3062 and EL4002 as EtherCAT Subordinate
devices. This example requires a dedicated network port that is reserved for EtherCAT using the
Ethernet Configuration tool on the target computer. Use the reserved port for EtherCAT
communication. This port is in addition to the port used for the Ethernet link between the
development and target computers.

EtherCAT In

mﬂ#

HITH
= |[[

s NI

&

To RPS +Ve
To RPS -Ve

§ on

a o/

Mg o>
mg >n

m
Slg SHE >N

é‘&

>n
>ng

1100

[Sug 34 >
BN

F
E

j BECKHOFF,

To test this model:

1 Connect the reserved network port in the target computer to the network IN port of the Beckoff
EK1100 coupler.
Assemble Terminals EL3062 and EL4002 with Coupler EK1100.

Loop back the I/O ports: Connect each output port of Terminal EL4002 to a corresponding input
port of Terminal EL3062.

Make sure that the terminals are supplied with the required 24-volt power supply.
5 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT main node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model creates two sine wave signals and sends the signals to the EL4002 terminal. The model
receives input signal values from the EL3062 terminal.

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder. Copy the example configuration file from the example folder to the current folder. To open the
model, in the MATLAB® Command Window, type:

16-31

16 simulink Real-Time Examples

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples', 'slrt ex ethercat beckhoff aio

EtherCAT Init D
Matwork Device 0 Status

¥

¥
¥

MNetwork Device O

(\'\j convert D;'far“ 3 (EL4002).A0 Dutputs Chanmel 1_Analog output
CH1_EL4032_Tx

J

¥

yry¥
—

Term 2 (EL3062).Al Standard Channel 1'\0’5"‘;3':3 J
Matwork Device 0 - CH1_EL3102_Rx

% convert Dopm 3 ([EL4002).AD Outputs Channel 2_Analog owtput
CHZ_EL4D32 Tx Metwork Device 0

¥
¥

[

¥

Term 2 (EL3062).Al Standard Channel E.Kfall..l,ata
Matwork Device 0 - CHZ_EL3102_Rx

h A 4
—

Capyright 2020 The MathWWorks, Inc.

Figure 1: EtherCAT model using Beckhoff analog I/O subordinate devices EL3062 and EL4002.
Configure the Model

Open the mask for the EtherCAT Init block and observe the pre-configured values. The EtherCAT
subordinate devices that are daisy chained together with Ethernet cable is a Device, also referred to
as an EtherCAT network. The Device Index selects one such chained EtherCAT network. The Ethernet
Port Number identifies which Ethernet port to use to access that Device. The EtherCAT Init block
connects these two so that other EtherCAT blocks use the Device Index to communicate with the
subordinate devices on that EtherCAT network.

If you only have one connected network of EtherCAT subordinate devices, and you have only reserved
one Ethernet port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port
Number = 1.

Create an ENI File for Different A/D D/A Subordinate Devices, If Needed

If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENI) file preconfigured for this model is BeckhoffAIOconfig.xml.

The ENI (EtherCAT Network Information) file that is provided with this example has an EK1100 with

EL3062 and EL4002 subordinate devices attached, in that order. If you have different analog 10
modules, you need to create a new ENI file for that collection.

16-32

EtherCAT Protocol with Beckhoff Analog 10 Subordinate Devices EL3062 and EL4002

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

Each EtherCAT configuration file (ENI file) is specific to the exact network setup for which it has
been created (for example, the network discovered in step 1 of the configuration file creation
process). The configuration file provided for this example is valid if and only if the EtherCAT network
consists of terminals EK1100, EL3062, and EL4002.

The ENI file defines a set of transmit and receive variables. For this example, a set of receive
variables are defined for each input channel of terminal EL.3062. Make sure the variables for channel
1 and channel 2 of terminal EL3102 are selected respectively in the two EtherCAT PDO Receive
blocks. These two variables are Term 2 (EL3062).AI Standard Channel 1.Value and Term 2
(EL3062) .AI Standard Channel 2.Value.

A set of transmit variables are defined for the two output channels of terminal EL4002. Make sure the
variables for channel 1 and channel 2 of terminal EL4002 are selected in the two EtherCAT PDO
Transmit blocks. These two variables are Term 3 (EL4002).A0 Outputs Channel 1.Analog
OQutput and Term 3 (EL4002).A0 Outputs Channel 2.Analog Output.

Build, Download, and Run the Model
To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the three host side scopes by double clicking each, data is relayed from the target back to
the development computer and displayed there.

Zooming into the first quarter second of execution for this model, on all three of the scopes shows:

Scope shows the notifications in yellow and the state in blue. The only notificatons have the value of 1
which has meaning that the state has changed. Each of those is aligned with a step in the state
output. Because this ENI file does not use distributed clock synchronization, the progression to Op
state is very fast, just over 0.1 second. Also, because this ENI file does not use distributed clocks, the
last 4 elements of the vector out of the init block are all 0.

16-33

16 simulink Real-Time Examples

16-34

Scopel shows the 1Hz sinewave output in yellow and the value read back by the A/D in blue. Notice
that there is no input until the EtherCAT state has progressed to Op state just after .1 seconds. If you
zoom in tighter, you notice that the A/D signal is delayed by several clock cycles from the D/A output.
This is because the A/D is read before the D/A is commanded to a new value and the A/D value is not
available until the next sample time. This D/A subordinate device takes a signed int as input, but can
only output in the range of [0,+10] volts so the input values only show positive values, even though
this A/D can read inputs from [-10,+10].

Scope?2 shows the 2Hz sinewave sent to the second D/A channel, with the same delayed start on input
and delayed response to a change.

The second way is to build the model (slbuild() or ~B), download from the MATLAB command line
and run from the command line. In that case, the scope blocks do not display data, but the Simulation
Data Inspector can be used.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, use the
MODELING tab on the model editor toolstrip to change the Stop Time and rebuild.

Display the Target Computer data

After running the model, you can also use the Simulation Data Inspector to view any signal that has
been marked for signal logging. Signals marked for signal logging have a dot with two arcs above it
in the model editor.

Stop and Close the Model
When the example completes its run, stop and close the model.

close system('slrt ex ethercat beckhoff aio');

EtherCAT Protocol with Beckhoff Analog 10 Subordinate Devices EL3062 and EL4002

See Also

* “EtherCAT Protocol with Beckhoff Digital IO Subordinate Devices EL1004 and EL2004” on page
16-36
* “Modeling EtherCAT Networks”

* “Configure EtherCAT Network by Using TwinCAT 3”

16-35

16 simulink Real-Time Examples

EtherCAT Protocol with Beckhoff Digital 10 Subordinate
Devices EL1004 and EL2004

This example shows how to communicate with EtherCAT® devices using the Beckhoff® digital I/O
terminals EL1004 and EL2004.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
Main device and two analog input/output terminals EL1004 and EL2004 as EtherCAT Subordinate
devices attached to an EK1100 coupler.

EtherCAT in Simulink® Real-Time™ requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

||
|
=|
8|

L | PP

EtherCAT In

Bl
=|

T

To RPS +Ve

To RPS -Ve —'—/

&

s W >EE
2| @0E >N
& N >N
= CEN W

EX1100

| 3ug Sall >a

J BECKHOFF

To test this model:

1 Connect the port that is reserved for EtherCAT in the target computer to the network IN port of
the Beckoff EK1100 coupler.

Assemble Terminals E1.1004 and EL2004 with Coupler EK1100.

Loop back the first two I/O ports: Connect ports numbered O1 and O2 of Terminal EL2004 to
ports numbered I1 and 12 of Terminal EL1004. Ports O3, 04, I3 and I4 are not used by this
example.

Make sure that the terminals are supplied with the required 24-volt power supply.
5 Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT main device
node model, and builds then runs the real-time application, see the Simulink Real-Time EtherCAT
documentation.

Open the Model

This model drives a pulse wave signal and transmits the signal and its inverse as Boolean values to
the EL2004 terminal, and receives the input signal transmitted by the EL1004 terminal.

16-36

EtherCAT Protocol with Beckhoff Digital 10 Subordinate Devices EL1004 and EL2004

The EtherCAT initialization block can be configured with either the full path to the ENI file or with a
relative path that can be found with the MATLAB which command. Copy the example configuration
file from the example folder to the current folder. To open the model, in the MATLAB® Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’', 'examples', 'slrt ex ethercat beckhoff dio

EtherCAT Init
Metwork Device 0 Status g D
EtherCAT Init
—»{ doubie w11)
Tarm 3 (EL1004) Channel 1. ned g p| double -l
Metwork Device 0 - CH1_EL1004 Rz "
T) m,jean o p| gt JE7™ 2 (EL2004).Channel 1.0utput
H-h-h CH1_EL2004_Tx Meatwork Device 0
EtherCAT PDO Transmit
NOT n I::\IE"_l;I'-er"n 2 (EL2004).Channel 2.0utput
" OH2_EL2004 [Tx i Matwork Device 0

EtherCAT PDO Transmit 1
double e

u+1.1 I—D C]
| doubl >
Metwork Device 0 CH2_EL1004_Rx —

Term 3 (EL10:04) Channel 2. e
Caopyright 2020 The MathWorks, Inc.

Figure 1: EtherCAT model using Beckhoff digital I/O terminals EL1004 and EL2004.

h J

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT subordinate devices that are daisy chained together with Ethernet cable is a Device, also
referred to as an EtherCAT network. The Device Index selects one such chained EtherCAT network.
The Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT
Init block connects these two so that other EtherCAT blocks use the Device Index to communicate
with the subordinate devices on that EtherCAT network.

If you only have one connected network of EtherCAT subordinate devices, and you have only reserved
one Ethernet port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port
Number = 1.

Describe Network with Configurator

Using a third-party EtherCAT configuration program that you install on a development computer,
generate an EtherCAT configuration (ENI) file. The ENI file for this example is
BeckhoffDIOconfig.xml.

16-37

16 simulink Real-Time Examples

16-38

The ENI (EtherCAT Network Information) file that is provided with this example has an EK1100 with
EL2004 and EL1004 subordinate devices attached, in that order. If you have different digital 10
modules, you need to create a new ENI file for that collection.

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

Each EtherCAT configuration file (ENI file) is specific to the exact network setup from which it was
created (for example, the network discovered in step 1 of the configuration file creation process). The
configuration file provided for this example is valid if and only if the EtherCAT network consists of
Terminals EK1100, EL1004, and EL2004 from Beckhoff.

The ENI file defines a set of transmit and receive variables. For this example, four receive variables
are defined for the four input channels of Terminal EL1004. Only the first two channels of Terminal
EL1004 are used in this example. Make sure the receive variables for channel 1 and channel 2 of
terminal EL1004 are selected respectively in the two EtherCAT PDO Receive blocks. These two
variables are Term 3 (EL1004).Channel 1.Input and Term 3 (EL1004).Channel 2.Input.
In the same way, four transmit variables are defined for the four output channels of terminal EL2004,
but only the first two channels are tested in this example. Make sure the transmit variables for
channel 1 and channel 2 of terminal EL2004 are selected respectively in the two EtherCAT PDO
Transmit blocks. These two variables are Term 2 (EL2004).Channel 1.Output and Term 2
(EL2004) .Channel 2.0utput.

Build, Download, and Run the Model
To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the three host side scopes by double clicking each, data is relayed from the target back to
the development computer and displayed.

The three scopes are Scope, Scopel and Scope?2.

Both notifications from the EtherCAT state machine and the current state are displayed in Scope.
Since there are no errors, the only notifications visible are the value 1 which means a state change at
that execution time step. The current state indicates the state that resulted from that state change.
Notice that Op (=8) state is reached very fast since this ENI file does not include distributed clock
synchronization. This view is zoomed in to the first 0.2 seconds of execution to show the transition to
Op state clearly.

EtherCAT Protocol with Beckhoff Digital 10 Subordinate Devices EL1004 and EL2004

4 Scopel - o x

Elle Tools View Simulation Help

® =[O |5 Fa-

Scopel and Scope2 show almost the same thing, but for two different channels. The signal is inverted
between the two of them as can be seen if you compare the time when there is a rising edge in the
yellow trace. The time step when physical 10 starts is when the state goes to Op state. Before that,
there is no input or output and the blue traces stay at 0. There is a time delay between the signal
being sent to the output blocks and the signal that comes back from the input blocks for two reasons.

There is a 2 time step delay due to EtherCAT communication which is followed by an additional delay
due to the speed of the hardware IO. The return signal shows a definite asymmetry between the delay
after sending a rising edge and the delay after sending a falling edge. If you inspect the actual output
signal with an oscilloscope, you see that the output is actually symmetric, but it is the input that has
additional hardware delay in it. Other DIO subordinate devices show different delay characteristics.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer Data

After running the model, you can use the Simulation Data Inspector to view any signal that has been
marked for signal logging. Signals marked for signal logging have a dot with two arcs above it in the
model editor.

Observations to Notice

Because data is both received from and sent to the subordinate devices as the final action during
execution and received data on one time step is only available during the following time step, you
should see a delay between the data being sent and the return value. In addition with digital IO,
writing a new value to an output takes a few microseconds to appear as a change in voltage which is
after the input was captured, there is a 2 time step delay from an output edge until the input shows
the edge in the data.

16-39

16 simulink Real-Time Examples

Close the Model

When the example completes its run, stop and close the model.
close system('slrt ex ethercat beckhoff dio');

See Also

* “EtherCAT Protocol with Beckhoff Analog 10 Subordinate Devices EL3062 and EL4002” on page
16-31

* “Modeling EtherCAT Networks”
* “Configure EtherCAT Network by Using TwinCAT 3”

16-40

EtherCAT Protocol Motor Velocity Control with Accelnet Drive

EtherCAT Protocol Motor Velocity Control with Accelnet Drive

This example shows how to control the velocity of a motor by using EtherCAT® communication. The
example motor drive is from Copley Instruments. This drive uses the CIA-402 (Can In Automation
402) device profile common to many drives. The example can work with other CIA-402 EtherCAT
drives if you generate an appropriate ENI file.

Requirements

This example is preconfigured to use an EtherCAT network that consists of the target computer as
EtherCAT Main device and an Accelnet™ AEP 180-18 drive from Copley Controls as EtherCAT
Subordinate device. Connect a supported brushless or brush motor to the drive. An example motor
that works with this example is the SM231BE-NFLN from PARKER.

EtherCAT in Simulink® Real-Time™ requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:

1 Connect the dedicated network port in the target computer to the EtherCAT IN port of the
Accelnet drive.
Connect a motor to the Accelnet drive.
Make sure that the Accelnet drive is supplied with a 24-volt power supply.
Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT main device
node model, and builds then runs the real-time application, see “EtherCAT Protocol Sequenced
Writing CoE Subordinate Device Configuration Variables” on page 16-67.

Open the Model
This model sends a varying velocity command to the drive.

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder. Copy the example configuration file from the example folder to the current folder. To open the
model, in the MATLAB® Command Window, type:

open_system(fullfile(matlabroot, 'toolbox','slrealtime', 'examples', 'slrt ex ethercatVelocityContr«

16-41

https://copleycontrols.com/en/support/
https://www.parkermotion.com/

16 simulink Real-Time Examples

EtherCAT Init

Metwork Device 0 Status
Main Device Shift DC

EtherCAT Init

h

u >

DC timing ermor

rive 1 (AEP) Recsive POO 1.Mo y o X i (AEP) Receiv y i
Data Drive 1 {AEF).Receive PDO 1 des of operation Set mods of operation Data Drive 1 (AEF).Receive FDO 1_Control word Set control word
Metwork Device 0 . Metwork Device 0
to velocity control to enabled

EtherCAT PDO Transmit 1 EtherCAT PDO Transmit

Drive 1 (AEP).Transmit PDO 1.5tatus word Data Status
Metwork Device 0 -
Drive 1 {AEP). Transmit PDO 1_Actual motor position

1 D 4,
MNetwork Device 0 nata Actual Pesition |§|

L

¥

Drrivie 1 (AEP). Transmit PDO 2. Actual motor velocity Data -
Metwork Device 0 - Actual Velocity |§|

Get an amplitude from the slidar

9951875 —

Dirive 1 (AEP).Receive PDO 1.Target velocity
Data °

int32
Commanded Welocity Matwork Device 0

h

Gain:Gain EtherCAT PDO Transmit 2

RN R RN R RN RN AR R Capyright 2020 The MathiWarks, Inc.
Q 100 200 300 400 500 &00 700 8O0 @00 1000

16-42

Figure 1: EtherCAT model for motor velocity control.
Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT subordinate devices that are daisy chained together with Ethernet cable is a Device, also
referred to as an EtherCAT network. The Device Index selects one such chained EtherCAT network.
The Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT
Init block connects these two so that other EtherCAT blocks use the Device Index to communicate
with the subordinate devices on that EtherCAT network.

If you only have one connected network of EtherCAT subordinate devices, and you have only reserved
one Ethernet port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port
Number = 1.

Create an ENI file for a Different CIA-402 Drive

If you need to create a new ENI file, you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENI) file preconfigured for this model is CopleyMotorVelocityConfig.xml.

Each EtherCAT configuration file (ENI file) is specific to the exact network setup from which it was
created (for example, the network discovered in step 1 of the configuration file creation process). The
configuration file provided for this example is valid if and only if the EtherCAT network consists of
one Accelnet drive from Copley Controls. If you have a different EtherCAT drive that uses the CIA-402
command set, this example still works, but you need to create a new ENI file that uses your drive.

EtherCAT Protocol Motor Velocity Control with Accelnet Drive

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

For this example, four receive PDO variables are defined in the configuration file and three are used
in the three EtherCAT PDO Transmit blocks: Control Word, Modes of Operation, and Target
Velocity. The fourth variable: Profile Target Position is used in example “EtherCAT Protocol Motor
Position Control with Accelnet Drive” on page 16-46.

* The Control Word PDO variable serves to control the state of the drive. The constant value 15 is
given as input to the block to set the first 4 bits to 1 to enable the drive. Refer to the EtherCAT
User Guide from Copley Controls for details on the bits mapping of this variable. This variable and
bit mapping is in the CIA-402 standard set.

* The Modes of Operation PDO variable serves to set the drive operating mode. The constant value
3 is given as input to the block to set the mode of the drive to Profile Velocity mode. For
details on supported modes of operation, see the Refer to the Copley Controls EtherCAT User
Guide. This variable and bit mapping is in the CIA-402 standard set.

* The Target Velocity PDO variable serves to set the desired velocity. In this example, the velocity
command at the input of the block can be tuned using the slider connected to the gain block
parameter.

Three transmit PDO variables are also defined in the configuration file and used in the three
EtherCAT PDO Receive blocks: Status Word, Actual Motor Velocity, and Actual Motor Position. Note
that EtherCAT refers to variables that the subordinate device sets as transmit variables which are
received by the target model.

* The Status Word PDO variable indicates the current state of the drive.

* The Actual Motor Velocity and Actual Motor Position PDO variables indicate the current values of
the motor velocity and position as read in the drive.

Make sure that the required transmit and receive PDO variables are selected in the blocks as
illustrated in Figure 1 before running the example. You could need to refresh these variables by
opening the dialogs and selecting the current variable again.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.
2 Click Run on Target.

If you open the host side scopes by double clicking each, data is relayed from the target back to the
development computer and displayed.

Included in the model is the ability to control the peak amplitude of the velocity. With the Run on
Target button, the slider is active and connected to the Amplitude constant block.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, pull down the

Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

16-43

https://www.copleycontrols.com/en/support/
https://www.copleycontrols.com/en/support/
https://www.copleycontrols.com/en/support/
https://www.copleycontrols.com/en/support/

16 simulink Real-Time Examples

16-44

Display the Target Computer Scopes

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the host. Also, the slider is active in external mode.

The Scope output images are referred to by the name in the title bar for each image. Discussion
follows each image.

Scope shows the target to subordinate device timing error as synchronization takes place using the
bus shift method. The subordinate device is adjusted to match the target timing resulting in a
damped wave showing good phase lock around 4.5 to 5 seconds. The hash is a manifestation of the
QNX® execution scheduler and is what is expected. On this graph, 5000 is in nanoseconds, so this
shows synchronization between 0 and -2 microseconds with residual random errors.

Scopel shows the progression of states as the drive is initialized. Most of the time is taken to achieve
time synchronization between target and EtherCAT subordinate devices. The SafeOp (=4) to Op (=8)
state transition occurs after a short settling time once the timing error is below the allowed error.

EtherCAT Protocol Motor Velocity Control with Accelnet Drive

Scope2 shows the position of the motor which is a phase shifted version of the sine wave velocity that
is sent to the motor. Note that the motor position does not change until the drive goes to Op state
around 4.3 seconds.

Scope3 shows the velocity that is sent to the drive and the velocity read back from the drive. The
velocity does not change until the drive goes into Op state.

After running the model, you can also use the Simulation Data Inspector to view any signal that has
been marked for signal logging. Signals marked for signal logging have a dot with two arcs above it
in the model editor.

Observations to Notice

The velocity command for the motor is a low frequency sine wave. The actual velocity read back from
the controller is delayed by several sample times and the actual position is out of phase by 90 degrees
from the actual velocity, as expected for sinewave variation.

Stop and Close the Model

When the example completes its run, stop and close the model.
close system('slrt ex ethercatVelocityControl');

See Also

» “EtherCAT Protocol Motor Position Control with Accelnet Drive” on page 16-46
* “Modeling EtherCAT Networks”
* “Configure EtherCAT Network by Using TwinCAT 3”

16-45

16 simulink Real-Time Examples

EtherCAT Protocol Motor Position Control with Accelnet Drive

16-46

This example shows how to control the position of a motor by using EtherCAT® communication. The
example motor drive is from Copley Instruments. This drive uses the CIA-402 (Can In Automation
402) device profile common to many drives. The example can work with other CIA-402 EtherCAT
drives if you generate an appropriate ENI file.

Requirements

This example is preconfigured to use an EtherCAT network that consists of the target computer as
EtherCAT Main device and an Accelnet™ AEP 180-18 drive from Copley Controls as EtherCAT
Subordinate device. Connect a supported brushless or brush motor to the drive. An example motor
that works with this example is the SM231BE-NFLN from PARKER.

EtherCAT in Simulink® Real-Time™ requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:

1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the Accelnet drive.
Connect a motor to the Accelnet Drive.
Make sure the Accelnet drive is supplied with a 24-volt power source.
Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT main device
node model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model creates a sine wave, and modulates it by multiplying by the value of the slider control. The
modulated signal is sent as motor position command to the drive.

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder. Copy the example configuration file from the example folder to the current folder. To open the
model, in the MATLAB® Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples', 'slrt ex ethercatPositionContr«

https://copleycontrols.com/en/support/
https://www.parkermotion.com/

EtherCAT Protocol Motor Position Control with Accelnet Drive

.,D
H

EtherCAT Init

h 4

hain Device Shift DC

Metwork Device 0 Status

EtherCAT Init

DiC timing emor

»| Data Drive 1 (AEP).Receive PDO 1.Control word Send coniral ward
v : Metwork Device 0
EtherCAT PDO Transmit
e 1 TEP et 0 o . -
»| Cata Drive 1 (AEP).Receive POO .1. Wodes of operation Send Mode of operation
Metwork Device O

EtherCAT PDO Transmit 1
Read the current position for display

Drive 1 (AEF). Transmit PDC 1_Actual motor position Data Actual_Motor_Position |
Metwork Device 0 - v D
—"

Get an amplitude from the slider Send the new target position

"\

\d

D Metwork Device 0

a -—<int3?]
- Target Position Commgind a'l:.)ar ve 1 (AEP). Receive PDO 1.Profile target position

EtherCAT PDO Transmit 2

Jroe
0

I|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII| COpy'l'lgh12':|2‘:|ThBMﬂ1thka| Inc.

100 200 300 400 500 600 TOO BO0 QOO 1000
7

Figure 1: EtherCAT model for controlling the position of a motor.
Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT subordinate devices that are daisy chained together with Ethernet cable is a Device, also
referred to as an EtherCAT network. The Device Index selects one such chained EtherCAT network.
The Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT
Init block connects these two so that other EtherCAT blocks use the Device Index to communicate
with the subordinate devices on that EtherCAT network.

If you only have one connected network of EtherCAT subordinate devices, and you have only reserved
one Ethernet port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port
Number = 1.

Create an ENI File for a Different CIA-402 Drive

If you need to create a new ENI file, you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff® that you install on a development computer. The EtherCAT configuration
(ENI) file preconfigured for this model is CopleyMotorPositionConfig.xml.

Each ENI file is specific to the exact network setup from which it was created (for example, the

network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of one Accelnet drive

16-47

16 simulink Real-Time Examples

16-48

from Copley Controls. If you have a different EtherCAT drive that uses the CIA-402 CanOpen profile,
this example still works, but you need to create a new ENI file that uses your drive. Refer to Can In
Automation web site at www.can-cia.org for details. EtherCAT CoE embeds CanOpen addressing for
process variables using EtherCAT as the transport layer instead of CAN.

An overview of the process for creating an ENI file is at “Configure EtherCAT Network by Using
TwinCAT 3”

For this example, four receive PDO variables are defined in the configuration file and three are used
in the three EtherCAT PDO Transmit blocks: Control Word, Modes of Operation, and Profile Target
Position. The fourth variable: Target Velocity is used in example “EtherCAT Protocol Motor Velocity
Control with Accelnet Drive” on page 16-41.

* The Control Word PDO variable serves to control the state of the drive. The constant value 15 is
given as input to the block to set the first 4 bits to 1 to enable the drive. For details on the bit
mapping of this variable, refer to the Can In Automation web site. This variable and bit mapping is
in the CIA-402 device profile.

* The Modes of Operation PDO variable serves to set the operating mode of the drive. The constant
value 8 is given as input to the block to set the mode of the drive to Cyclic Synchronous
Position mode. For detailed documentation, refer to the Can In Automation web site. This
variable is in the CIA-402 device profile.

* The Profile Target Position PDO variable serves to set the desired position. In this example, the
position command given as input to the block is a sine wave modulated by the constant Amplitude
value linked to the slider control in the model.

Transmit PDO variables (transmitted by the subordinate device) are also defined in the configuration
file and one is used in the EtherCAT PDO Receive block: Actual Motor Position for the drive.
The Actual Motor Position PDO variable indicates the current value of the motor position as read in
the drive. Make sure the required transmit and receive PDO variables are selected in the blocks
before running the example. You could need to refresh these variables. Note that EtherCAT refers to
variables that the subordinate device sets as transmit variables which are received by the target
model.

Make sure that the required transmit and receive PDO variables are selected in the blocks as
illustrated in Figure 1 before running the example. You could need to refresh these variables by
opening the dialogs and selecting the current variable again.

Build, Download, and Run the Model
To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two host side scopes by double clicking each, data is relayed from the target back to
the development computer and displayed.

Included in the model is the ability to control the amplitude of the cycling motion. With the Run on
Target button, the slider is active and connected to the Amplitude constant block.

The model is preconfigured to run for 10 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build and run.

https://www.can-cia.org
https://www.can-cia.org
https://www.can-cia.org

EtherCAT Protocol Motor Position Control with Accelnet Drive

Display the Target Computer data

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the host. Also, the slider is active in external mode.

Scope shows the Distributed Clocks timing difference between the main device stack running on the
target computer and the timing on the drive. This ENI file is configured to use Main Shift mode for
DC. The clock on the target computer is adjusted to match the timing on the EtherCAT reference
clock on the first DC enabled subordinate device.

Scopel shows the state progression from Idle to Init (=1) to PreOp (=2) to SafeOp (=4) for a very
short time visible if you zoom in, to Op (=8) at around 4.3 seconds.

Scope2 shows both the sine wave being sent to the drive (blue) and the actual position (yellow). This
is zoomed into the few seconds right when the drive went to Op state and external control starts.
Since the motor hardware cannot respond instantaneously, and the commanded position is not 0, you
see the actual position ramp up and overshoot slightly before settling down to follow the commanded
position. The time delay between command and actual is roughly 18 sample time steps with this

16-49

16 simulink Real-Time Examples

16-50

drive. The controller inside the drive and motor inertia are responsible for this longer time delay.
Other drives may have different delay characteristics.

After running the model, you can use the Simulation Data Inspector to view any signal that has been
marked for signal logging. Signals marked for signal logging have a dot with two arcs above it in the
model editor.

Observations to Notice

This is a simple motor control example. The numerous tunable parameters inside the drive are not
adjusted in this model. Adjusting those needs a more advanced model using the CoE/SDO blocks.

Close the Model

When the example completes its run, stop and close the model.
close system('slrt ex ethercatPositionControl');

See Also

* “EtherCAT Protocol Motor Velocity Control with Accelnet Drive” on page 16-41
* “Modeling EtherCAT Networks”
* “Configure EtherCAT Network by Using TwinCAT 3”

Generate ENI Files for EtherCAT Devices

Generate ENI Files for EtherCAT Devices

This example shows how to generate EtherCAT® network information (ENI) files to use in Simulink®
Real-Time™ with EtherCAT devices.

The example shows the generation process steps in EtherCAT Configurator and the process steps in
the TwinCAT® XAE plugin for Microsoft® Visual Studio®.

The hardware connections are:

* EK1100 -- EtherCAT coupler
* EL3062 -- EtherCAT terminal
* EL4002 -- EtherCAT terminal
* EL9011 -- Bus End terminal

The EK1100 coupler connects EtherCAT with the EtherCAT terminals (ELxxxx). One station consists
of an EK1100 coupler, any number of EtherCAT terminals, and a bus end terminal.

To provide power connections, connect the 24 V and 0 V terminals of the EK1100 to a 24 V regulated
power supply (RPS) +Ve and -Ve terminals.

The EL3062 analog input terminal processes signals in the range of [-10, 10] V.
The EL4002 analog output terminal generates signals in the range of [0, 10] V.

To configure the EtherCAT network, connect the EtherCAT devices to the development computer on
which the EtherCAT configurator is running. This connection permits scanning and discovery of the
EtherCAT devices. After the configurator generates the XML file, you can reconnect the EtherCAT
devices to the target computer. This diagram shows the suggested connections.

EtherCAT In

pa—y
EthercAT ™

T

=|
=]
=

&

g

To RPS +Ve

To RPS —-Ve _I_a

| |

>n
T

NE >N

mg om

]
[
g SHE >N

i

o

A 2
¢

>m
>ng

J BECKHOFF
ST
= d. |
>m

.[
]

Fong
F

Install TwinCAT 3.1 XAE and Run Microsoft Visual Studio with TwinCAT
The latest version of TwinCAT is the 3.x version and that is the preferred configuration tool.
The XAE sub version does not contain the full run time engine that runs on Windows®. This is

available free of charge from the Beckhoff® web site. For use with Simulink Real-Time, you do not

16-51

16 simulink Real-Time Examples

need the run time engine because you are using the run time implementation on the target. The full
version with run time engine requires the purchase of a license from Beckhoff.

The TwinCAT 3.1 software requires a supported version of Microsoft Visual Studio to be installed.
TwinCAT 3.1 uses the MSVC GUI integration and does not have a GUI by itself. The versions of MSVC
with which a given version of TwinCAT works are discussed in the TwinCAT documentation.
Installation finds supported MSVC versions on your machine and installs to them.

To install the TwinCAT 3.1 XAE:

Go to www.beckhoff.com and select Download.

Select TwinCAT 3 and download the setup.

Install TwinCAT 3.

Start Microsoft Visual Studio.

From the TwinCAT menu, select Show Realtime Ethernet Compatible Devices.

N U A W N R

Select the Ethernet adapter for your EtherCAT device, then select Install.

Because TwinCAT installs an Ethernet filter inline with the Ethernet port you have selected, it is good
practice to add an extra Ethernet port to use exclusively with EtherCAT to avoid any possible problem
the filter can cause when sharing the Simulink Real-Time host-target communication port with
TwinCAT.

All EtherCAT configuration programs use EtherCAT Subordinate Information (ESI) files to describe
the subordinate devices that are found on the network. These Beckhoff configuration programs come
prepopulated with mostly Beckhoff devices. To correctly configure an EtherCAT network with devices
from other manufacturers, you may need to get the correct ESI file from the device manufacturer
web site. If you do not have an ESI file for a subordinate device on your network, the scan process
does not populate the Solution Explorer with the correct name of the device and the read and write
variables are not correct.

To create a new TwinCAT project in Visual Studio:

1 Start Visual Studio. Go to File > New > Project.
Under Installed, select TwinCAT Projects and click OK.

3 Verify whether the project has been created successfully in the status bar of Microsoft Visual
Studio.

4 Enter your license if this instance is the first time that you are using TwinCAT and you installed
the full version. If you are using TwinCAT in evaluation mode, fill in the Captcha.

Observe the Solution Explorer pane the left side of Visual Studio.

Go to TWINCAT in the menu and select Scan. You can also right click Solution Explorer >
your TwinCAT project > I/O > Devices > Scan.

7 A dialog box opens with the message All devices may not automatically be found. Click OK
and wait for the scan to complete. You now see a dialog box saying New I/O devices have been
found.

8 Ensure that the check box is selected, then click OK. A dialog box appears with a Scan for
boxes? message. Click Yes. The EtherCAT devices in your network are scanned, and the devices
appear.

9 You see a dialog box that asks whether to activate free run mode. Select No.

16-52

https://www.beckhoff.com/

Generate ENI Files for EtherCAT Devices

10 Observe the Solution Explorer and verify that the devices were scanned correctly.

When you first start TwinCAT the right information panel is not displayed. You need to double-click
any item in the tree view the first time. After that the information dialog for any item is displayed by a
single click on that item in the Solution Explorer tree view.

w TwinCAT Project1 - Microsoft Visual Studio YR &7 QuickLaunch (Ctrl+Q) A - B x
File Edit View Project Build Debug TwinCAT TwinSAFE PLC Team Tools Test Scope Analyze Window Help 1 David Skolnick ~
B2 oM Release | TwinCAT RT (x64) - B Attach.. - B RS RE
g | @3 wE " <Local» - - -
Solution Explorer > 1 x Properties > i x
& o5 a pE| Device 2 (EtherCAT) EtherCAT Master .
Search Solution Explorer (Ctrl+;) P~ %
] Solution 'TwinCAT Project' (1 project) B Misc
4 Ha TwinCAT Project1 (Name) Device 2 (EtherCAT)
4 Iﬁ SYSTEM Disabled SMDS_NOT_DISABLED
¥ License ltemType 2
b @ Real-Time PathName THD*Device 2 (EtherCA
B Tasks E Persistent
£l Routes SavelnOwnFile False

¥5 Type System
[@] TcCOM Objects
MOTION
pLC
[SAFETY N
Cos
a 170
4 Devices

4 [Device 2 (EtherCAT)

_’5 Image Error List > o x
2% Image-Info Entire Selution - |Q 0 Errors | ‘ 1 0Warnings ‘ |o 0 Messages Build + IntelliSense -
b 2 SyncUnits
Inputs
4 [Outputs Description Project File Line
B Frm0Ctrl
B Frm0WcCtrl
B DevCtrl
b [InfoData
4 ([Term 1 (EK1100)
b @ InfoData
b ™ Term 2 (EL3062)
b ™ Term 3 (EL4002) Misc
B Term 4 (EL901T)
&% Mappings

Search Error List o~

-

Exception Settings Error List | Qutput Properties Toolbox

This item does not support previewing 4 Publish «

Configure EtherCAT Main Node Data with TwinCAT

To configure the EtherCAT main node, create and configure a task, then add the inputs and outputs to
the task.

To create an EtherCAT Task:

1 In the Solution Explorer, right-click the Tasks node and select Add New Item.

2 In the Insert Task dialog box, select TwinCAT Task With Image, provide a name for the task,
and click OK.

3 Select the task that you created. The value Cycle Ticks determines the cycle time as a multiple
of the Base Time determined on the Real-Time item. The default task time is set to 10 ms. If
you are using Distributed Clock synchronization, a task time of 1-2 ms is the slowest that works
with Main Shift DC mode.

4 Create at least one cyclic input/output task. Link this task to at least one input variable and one
output variable on each subordinate device.

5 Ifyou want to run faster than 1ms time, you need to change the base time on the Real-Time item
above Tasks. On the Settings tab, you need to change the Base Time selection to a faster one.

16-53

16 simulink Real-Time Examples

By using distributed clocks (DC), the EtherCAT protocol can synchronize the time in all local bus
devices within a narrow tolerance range. Only some EtherCAT devices support DC. It is important
that if a device supports DC, you configure it accordingly. For example, in the example configuration,
the EL4002 supports DC. Most motion controllers (motor drives) support DC and some require it to
get to Op state.

To configure EtherCAT DC:
Enable DC and choose Bus shift or Main shift DC mode.

Click on the Device n (EtherCAT) node

Select the EtherCAT tab in the information panel.

Click on Advanced Settings which opens a new dialog.

In the Advanced Settings dialog, select the Distributed Clocks page.

g A W N R

By default the Automatic DC Mode Selection bhox is checked, which generally gets you Main
Shift DC mode. The first DC enabled subordinate device is the reference clock and the Simulink
Real-Time execution time is shifted slightly to align execution with the reference clock.

6 Deselect the Automatic mode and you have control over which DC mode to use or to turn it off.
Next items are with Automatic deselected.

7 With DC in use deselected, no Distributed clock synchronization takes place. This results in
much quicker initialization time to get to Op state, but there is no synchronization between
subordinate devices.

8 With DC in use selected, you have two different synchronization methods between the
Speedgoat® target machine and the EtherCAT subordinate devices.

9 Independent DC Time uses the first DC enabled subordinate device as the reference clock and
the target machine clock is adjusted slightly to phase lock model execution to the first DC
enabled subordinate device.

10 DC Time controlled by TwinCAT Time should be read as controlled by target machine time
in Simulink Real-Time. This is bus shift mode where the target machine is the reference clock
and the subordinate device execution times are shifted slightly to phase lock to the target
machine.

11 Select both Continuous Run-Time Measuring and Sync Window Monitoring.
Now that you have chosen the DC mode to use, you can visit all of the DC enabled subordinate
devices in your network and set them to the correct mode. This example ENI file only supports one
DC enabled subordinate device, the EL4002.

Click the node Term 3 (EL4002) and select the DC tab.

2 By default, the Operation Mode is set to SM-Synchron which does not synchronize output to
DC time. Change the Operation Mode to DC-Synchron. Different subordinate devices have
different names for the operating mode.

3 Click Advanced Settings and set the Distributed Clock options as shown.

16-54

Generate ENI Files for EtherCAT Devices

D¢ TwinCAT Project! - Microsoft Visual Studic YH & | Quick Launch [Ctri+Q) P - o x

File Edit View Project Build Debug TwinCAT TwinSAFE PLC Team Tools Test Scope Analyze Window Help 1 David Skelnick ~
: B-h-2Rd YT Release -| | TwinCAT RT (x64) | p Atach.. - 5 IRpsREsme

<Local> M < s

Solution Explorer R B Gl TwinCAT Project] & X v | Properties oo ~ 1%
* -
@ ®- g p EI General BtherCAT DC Process Data Statup CoE -Orline Online Term 3 (EL4002) EL4D02 2Ch. Ana. Output 0-11
Search Solution Explorer (Ctrl+;) P~ Elv
X X Operation Mode: DC-Synchron ~ .
] Solution 'TwinCAT Project’ (1 project) = B Misc
Fl na TwinCAT Project] Advanced Settings.. (Name) Term 3 (EL4002)
4 ﬂ SYSTEM Disabled SMDS_NOT_DISABLED
¥ License 0 e 5
- Advi e = £
b @ Real-Time i ——— THD*Device 2 (EtherCAl
4 B T & Distributed Clock Distributed Clock
4 [B Task1 False
'E Image Cyclic Mode
Inputs Operation Mode: DC-Synchron ~
W Cutputs i
S Routes Enable Sync Unit Cycle {us): 4000
¥15 Type System SNCo
[@] TcCOM Objects Cycle Time (us) Shift Time: (ps)
@ Sync Unit Cycle [1 ~ User Defined D
() User Difined + SYNCD Cycle
F0] T B (R
4
[[] Based on Input Reference
4 =% Device 2 (EtherCAT) Error List =
3% Image Entire Sold [Enable SYNC 0
able =
*8 |mage-Info ICI
b 2 Syncnits Search Erroj
4 Inputs D SYNC1
4 [Outputs (O Syne Unit Cycle Cycle Time (us) 4000
B Frm0Ctrl _
& Frm0WcCtrl ® SYNC 0 Cycle k1 | Shift Time {us):
& DevCtrl [Enable SYNC 1
P [InfoData
4 [Term 1 (EK1100)
b [InfoData [[1 Use as potential Reference Clock
b ™ Term 2 (EL3062)
4 Term 3 (EL400Z) Cancel
b B AO Outputs Cha
b Bl AO Outputs Cha ™
4 3 Exception Settings Error List | Qutput Properties Toolbox

4 Publish a

To export and save the EtherCAT configuration, generate the ENI file:

Click the node for your EtherCAT device and click the EtherCAT tab.
Click Export Configuration File.

In the Save As dialog box, enter an XML file name, such as simple _adda eni.xml, then click
Save. This XML file is the ENI file. The ENI file and the Simulink Real-Time model that uses the
ENI file cannot have the same name. They must have different names.

4 When you close the TwinCAT project, the editable version of this configuration is saved in the
project file. You can modify the configuration by opening this project and by exporting to XML
again.

Import a Device with the Configurator

Device import is often part of the workflow for third-party (different manufacturer) devices. Use this
process to configure a device that is not present in the Beckhoff system. Numerous motors and their
drives fall under this category. Sometimes, you must configure a device that is not present in the
Beckhoff system. The TwinCAT EtherCAT main device or System Manager uses the device description
files for the devices to generate the configuration in online or offline mode.

The device descriptions are contained in ESI files (EtherCAT Subordinate Information) in XML
format. These files can be requested from the respective manufacturer and are made available for
download. An XML file can contain several device descriptions.

16-55

16 simulink Real-Time Examples

16-56

The ESI files for Beckhoff EtherCAT devices are available on the Beckhoff website and are stored in
the TwinCAT installation folder. The default for TwinCAT2 is C:\TwinCAT\IO\EtherCAT. The files
are read (once) when you open a new System Manager window and if they have changed since the
last time that you opened the System Manager window.

If using a TwinCAT configurator, the TwinCAT installation includes the set of Beckhoff ESI files which
were current at the time when the TwinCAT build was created. For TwinCAT 2.11, TwinCAT 3, and
later, you can update the ESI folder from the System Manager if the programming PC is connected to
the Internet (Option > Update EtherCAT Device Descriptions).

See Also
* “Modeling EtherCAT Networks”

* “Configure EtherCAT Network by Using TwinCAT 3”
» “EtherCAT Configurator Component Mapping”

EtherCAT Protocol Detect Network Failure and Reset

EtherCAT Protocol Detect Network Failure and Reset

This example shows how to use the EtherCAT® Notifications block to detect a failure in the
connected network and to restart the network when the failure is corrected.

Only a disconnected Ethernet cable into the first subordinate device is detected by this example.
More complicated failure situations can be detected if you study the pattern of notifications that
result and write the embedded MATLAB® block to account for those.

Requirements

To run this example as presented, you need a Beckhoff® EK1100 with EL1202, EL2202-0100, EL3102
and EL4032 subordinate device modules. The model does not write to any process objects. Replacing
the ENI file with one appropriate to your network works as well.

EtherCAT in Simulink® Real-Time™ requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:

1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the EK1100 interface module.
Make sure the EK1100 is supplied with a 24-volt power source.
Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT main node
model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model is a beginning of a full implementation to catch network failures and reinitialize the
network once the failure is fixed. The simple state machine in the embedded MATLAB block can be
replaced with a State Flow implementation, which may be necessary for more complicated failure
detection and recovery.

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder or on the MATLAB path because the file name is present without directory information.

If you want to modify this model to experiment with it, copy the example configuration file and the
model file from the example folder to the current folder. To open the model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’', 'examples', 'slrt ex ethercat notifyreset'

16-57

16 simulink Real-Time Examples

EtherCAT Init

Matwork Device 0

Bus Shift DC

h
=
)

Status

EtherCZAT Init

EtherCAT Get Motifications,

MNatwork Device 0

Values

EtherCAT Gat Motifications

.

Display offeets

inkstatus

whe ermar

hJ

Framea resp error

Al slaves Operational

Slave Ermor

¥

¥

Scanbus error

'

A4

hJ

w24

EtherCAT Get State
Matwork Device 0

L= |
deinsyne B w22

State P state

¥

-

16-58

L
P u+10

L1

A4

EtherCAT Get State sigtesh

hJ

newslate

Reset State Maching

¥

r

I
Copyright 2020 The MathWorks, Inc. L NewState ProvStatef————————=—]

Switch to Op Stated

Figure 1: EtherCAT model for detecting a disconnected Ethernet cable at the first subordinate
device and reinitializing the network once the cable is reconnected.

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT subordinate devices that are daisy chained together with Ethernet cable is a Device, also
referred to as an EtherCAT network. The Device Index selects one such chained EtherCAT network.
The Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT
Init block connects these two so that other EtherCAT blocks use the Device Index to communicate
with the subordinate devices on that EtherCAT network.

If you only have one connected network of EtherCAT subordinate devices, and you have only reserved
one Ethernet port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port
Number = 1.

Create an ENI File for a Different Subordinate Device Network

If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENTI) file preconfigured for this model is Stack4 BS 1ms.xml.

EtherCAT Protocol Detect Network Failure and Reset

Each ENI file is specific to the exact network setup for which it was created (for example, the
network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of a Beckhoff EK1100
with EL1202, EL2202-0100, EL3102 and EL4032 subordinate device modules. If you have a different
EtherCAT drive, this example still works, but you need to create a new ENI file that uses your
subordinate devices.

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

Build, Download, and Run the Model

To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two scopes by double clicking each, the data is relayed from the target back to the
development computer and displayed there.

The model is preconfigured to run for 15 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer Data

If you run the model using the Run on Target button, the external mode is connected and you can
double click the scope blocks and see the data on the development computer. The Display blocks also
work.

When running this model, to demonstrate the reinitialization stages, you need to disconnect and
reconnect the Ethernet cable between the target machine and the EtherCAT subordinate device
network. When you reconnect the cable, you see the DC timing perform the same resynchronization
that occurs during the initial period.

When using Run on Target, Scope shows the DC timing error between the main device code on the
target and the first DC enabled subordinate device. Because the error is returned as nanoseconds,
this graph shows that the timing difference settles down to the order of 3-5 microseconds (3000 to
5000 nanoseconds) difference between the DC enabled subordinate devices and the target machine
running the code. The residual scatter just reflects task scheduling variability in the target computer
RTOS.

16-59

16 simulink Real-Time Examples

16-60

In this experimental run, the Ethernet cable was disconnected twice during the 30 second run.
Disconnection occurred at about 7 seconds, reconnection at about 12 seconds. This process repeats
at about 18 seconds and 21 seconds. Each time the cable is reconnected, the timing error shows a
pulse that shows drift between target and EtherCAT network during the time the cable was
disconnected and is the expected resynchronization behavior.

4 Scopel - o x

Eile Tools View Simulation Help

0-08|z-[O|8- Fa-

Scopel shows several logical signals with vertical offsets to show a logic analyzer like display. From
the top of the image these are:

Link status (yellow)

Working count error (blue)

Frame response error (red)

All subordinate devices Operational (green)

Subordinate Device Error (purple)

Scanbus error (light blue)

O U A W N R

Disconnecting the cable caused a scanbus error as seen on the light blue trace. Nothing happens
until the cable is reconnected at about 12 seconds. The link status reflects the single time step
notifications that indicate the link going away and the link coming back. On the first disconnection,
you do not see the link going away notification, but you do see the link coming back. The embedded
MATLAB block keeps a persistent variable with the link status with an initial value of 2 and changes it
depending on the notifications.

After the link comes back, there is both a subordinate device error and frame response error before
All Subordinate Devices Operational goes down for a sample time. At that point timing
resynchronization starts and you see the damped wave showing the timing errot falling to within a
few microseconds of error.

4 Scope2 - o x
Ele Tools View Simulation Help

0-08|%-[O|8 Fa-

aaaaa

Scope2 shows more status outputs with:

EtherCAT Protocol Detect Network Failure and Reset

statechange (yellow)
sbdone (blue)

dcinsync (red)

statechange request (green)
newstate (purple)

o A W N R

current state (light blue)

When the link goes down, the stack notices that and performs a scan of devices on the bus. That is
the sbdone mark at about 7 seconds that also resulted in the sbscan error shown in Scopel. Next
when the link is restored at 12 seconds, another bus scan is performed, shown at 12 seconds in the
blue trace. The embedded MATLAB block requests a state change to PreOp (=2) shown in the green
and purple traces. Once Preop is reached, you see another state change request to go to Op (=8)
state which is the second change in green and purple. That starts resynchronization of the clocks
between the development comptuer and the target computer, which takes a few seconds until you see
dcinsync at about 14 seconds (red trace) with the transition to Op state right after.

Disconnect the cable again to repeat the whole sequence again starting at about 18 seconds.

While this example needs manual intervention to disconnect and reconnect the Ethernet cable, the
same restart can be invoked by just requesting PreOp state follwed by a request for Op state,
skipping the interaction with the link status if triggered by some other condition in the model.

If you run the model from the command line, you can use the Simulation Data Inspector to view any
signal that is marked for signal logging. Signals marked for logging appear with the dot with two arcs
above it in the model editor.

See Also

* “Modeling EtherCAT Networks”

* “EtherCAT Protocol Sequenced Writing CoE Subordinate Device Configuration Variables” on page
16-67

* “EtherCAT Protocol Sequenced Writing SoE Subordinate Device Configuration Variables” on page
16-62

close system('slrt ex ethercat notifyreset');

16-61

16 simulink Real-Time Examples

EtherCAT Protocol Sequenced Writing SoE Subordinate Device
Configuration Variables

16-62

This example shows how to use SoE blocks and a simple state machine to write configuration values
to variables that can only be written before going to EtherCAT® Op state. For code needed to use the
CoE blocks for subordinate devices that understand CoE protocol, see “EtherCAT Protocol Sequenced
Writing CoE Subordinate Device Configuration Variables” on page 16-67.

For subordinate devices that understand CoE addressing, restrictions on when a specific object can
be written is somewhat rare. For subordinate devices that understand SoE addressing, this restriction
is much more common.

Changing configuration objects in subordinate devices before starting IO to the external connections
is useful, even if modifying the values is not restricted.

This example also shows distributed clocks synchronization using the bus shift DC mode where the
subordinate devices are shifted in time to match the execution time of the main device.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
Main device and at least one subordinate device that has SoE addressed objects. The supplied ENI
file is for a Beckhoff® AX5103 drive.

EtherCAT in Simulink® Real-Time™ requires a dedicated network port on the target computer that is
reserved for EtherCAT use by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:
1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the AX5103 drive.

Make sure the AX5103 is supplied with a 24-volt power source.
Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT main device
node model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model illustrates how you can read or write to SoE/SSC objects if they are only writable in
EtherCAT PreOp state. You can move the SoE/SSC transfers to EtherCAT SafeOp state by changing
the Initialization end state in the EtherCAT Init block and by also changing the constant in the
Wait for this state constant block. These settings direct the state machine to start sending SoE
messages when it reaches the initialization end state.

1 Init=1
2 PreOp=2
3 SafeOp=14

EtherCAT Protocol Sequenced Writing SoE Subordinate Device Configuration Variables

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder or on the MATLAB® path because the file name is present without directory information.

If you want to modify this model to experiment with it, copy the example configuration file and the
model file from the example folder to the current folder. To open the model, in the MATLAB Command
Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples','slrt ex ethercat asyncSoE SSC

EtherCAT Init
Matwork Device 0 Status —| L W ——
Bus Shift DC
=2

%

set to go to PreCp (==2) state u N —D|§|

»
Cycle through SSCrequests
I:l—I_'in a specific order Datz
nge »| i Status —
{l TG HW Varsion - double I
erCAT Get S l—’
| 2 E\'l:'trT k E‘;EI_ - laée State curstate oprequest >
& stwork Hevice HW Decode »
EtherCAT Get State fon . SoE commands
- n order
P status — ‘
J 1
Cycle cantrol =]
Goto Op
L e >
»

:
|
0

Caopyright 2020 The Math\Waorks, Inc. —P‘

Figure 1: EtherCAT model for sequencing through SoE/SSC commands after pausing initialization at
PreOp state

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT subordinate devices that are daisy chained together with Ethernet cable is a Device, also
referred to as an EtherCAT network. The Device Index selects one such chained EtherCAT network.
The Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT
Init block connects these two so that other EtherCAT blocks use the Device Index to communicate
with the subordinate devices on that EtherCAT network.

If you only have one connected network of EtherCAT subordinate devices, and you have only reserved

one Ethernet port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port
Number = 1.

16-63

16 simulink Real-Time Examples

16-64

Create an ENI file for a Different SoE drive

If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff that you install on a development computer. The EtherCAT configuration
(ENTI) file preconfigured for this model is BeckDrive 1ms.xml.

Each ENI file is specific to the exact network setup for which it was created (for example, the
network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of one AX5103 drive. If
you have a different EtherCAT drive this example still works, but you need to create a new ENI file
that uses your drive.

For an overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

If you use a different drive, you need to consult the manual for your devices and find the SoE
mapping. Using that mapping, you need to change the SSC commands in the SOE commands in
order subsystem to use objects on your drive.

Build, Download, and Run the Model
To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two scopes by double clicking each, the data is relayed from the target back to the
development computer and displayed.

The model is preconfigured to run for 15 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer Data

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the development computer. The Display blocks also
work.

When using Run on Target, Scope shows the DC timing error between the main device code on the
target and the first DC enabled subordinate device. Since the error is returned as nanoseconds, this
graph shows that the timing difference settles down to the order of 3-5 microseconds (3000 to 5000

EtherCAT Protocol Sequenced Writing SoE Subordinate Device Configuration Variables

nanoseconds) difference between the DC enabled subordinate devices and the target machine
running the code. The residual scatter just reflects task scheduling variability in the target computer
RTOS.

Scopel shows the progression of EtherCAT states, from idle to Init to PreOp, SafeOp and finally Op
state. SafeOp is only entered briefly and only shows up as the value 4 for a few time steps before the
switch to Op state. Since this model uses the distributed clocks mechanism, the switch to Op state
only occurs once the timing error settles down.

Scope2 shows the status outputs of the 5 async SDO blocks inside the subsystem. Each SDO block is
enabled to write for one time step. The block switches to status = 1 (busy) for a few time steps. On
successful completion status = 2 (done), the block switches for one time step. If a block encounters
an error, the block switches to status = 3 (error) for one time step. On an error, the Cycle control
embedded MATLAB code block stops the sequence and sets the error output, which stops the model.
In that case, the failing block have output an error code that is displayed on Displayl. This display is
zoomed into the interval just after state went to PreOp (=2) state.

16-65

16 simulink Real-Time Examples

16-66

Scope4 shows several of the outputs from the Cycle control block. The first 5 are the enable signals,
made true one at a time by Cycle control. The oprequest output is true for one time step to trigger
the request to proceed to Op state. This display is zoomed in to the same interval as in Scope2.

When all of the requested SSC commands are complete and the state has progressed to Op state, the
done signal is set to true for the remainder of execution. The rest of your model goes into the Op
State Model subsystem.

If you need a different number of SSC commands to execute before Op state, you need to edit the
Cycle control embedded MATLAB code block and modify the persistent array that is currently sized
to have length 10, which is larger than the number of SSC commands being requested.

If you run the model from the command line, you can use the Data Inspector, accessible from the
toolstrip, to view any signal that has been tagged to log with the Log Selected Signals selection
found by right clicking on the signal. Those are marked with the dot with two arcs above it in the
model editor.

See Also

* “EtherCAT Protocol Sequenced Writing CoE Subordinate Device Configuration Variables” on page
16-67

» “EtherCAT Protocol Detect Network Failure and Reset” on page 16-57

* “Modeling EtherCAT Networks”

* “Configure EtherCAT Network by Using TwinCAT 3”

EtherCAT Protocol Sequenced Writing CoE Subordinate Device Configuration Variables

EtherCAT Protocol Sequenced Writing CoE Subordinate Device
Configuration Variables

This example shows how to use CoE blocks and a simple state machine to write configuration values
to variables that can only be written before going to EtherCAT® Op state. For code needed to use the
SoE blocks for subordinate devices that understand SoE protocol, see “EtherCAT Protocol Sequenced
Writing SoE Subordinate Device Configuration Variables” on page 16-62.

For subordinate devices that understand CoE addressing, limited ability to read or write specific
objects is somewhat rare. For subordinate devices that understand SoE addressing, this restriction is
much more common.

This example also shows distributed clocks synchronization using the bus shift DC mode where the
subordinate devices are shifted in time to match the execution time of the main device.

Requirements

To run this example, you need an EtherCAT network that consists of the target computer as EtherCAT
main device and at least one subordinate device that has CoE addressed objects. The supplied ENI
file is for a 5 element subordinate device stack: EK1100+EL1202+EL2202+EL3102+EL4032.

EtherCAT in Simulink® Real-Time™ requires a dedicated network port on the target computer that is
reserved for EtherCAT by using the Ethernet configuration tool. Configure the dedicated port for
EtherCAT communication, not with an IP address. The dedicated port must be distinct from the port
used for the Ethernet link between the development and target computers.

To test this model:
1 Connect the port that is reserved for EtherCAT in the target computer to the EtherCAT IN port of
the EL1100 interface.

Make sure the EK1100 is supplied with a 24-volt power source.
Build and download the model onto the target.

For a complete example that configures the EtherCAT network, configures the EtherCAT main device
node model, and builds then runs the real-time application, see “Modeling EtherCAT Networks”.

Open the Model

This model illustrates how you can read or write to CoE/SDO objects if they are only writable in
EtherCAT PreOp state. You can move the CoE/SDO transfers to EtherCAT SafeOp state by changing
the Initialization end state in the EtherCAT Init block and by also changing the constant in the
Wait for this state constant block. These settings direct the state machine to start sending CoE
messages when it reaches the initialization end state.

1 Tnit=1

2 PreOp=2
3 SafeOp=14
4 Op=38

The EtherCAT initialization block requires that the configuration ENI file is present in the current
folder.

16-67

16 simulink Real-Time Examples

If you want to modify this model to experiment with it, then copy the example configuration file from
the example folder to the current folder. To open the model, in the MATLAB® Command Window,

type:
open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples','slrt ex ethercat asyncCoE cyc

EtherCAT Init
U i C]

Mebwork Device O Status
Bus Shift DC

h 4
h 4

sat to go fo PreCp (==2) state

h 4
=
=
h 4

Cycle through 500requests in a specific order

I:l—L. Data
dur f I irige - L Error Codes -
Status
EtherCAT Get State SDO commands
5 P curstate opregques
MNetwork Device 0 State urstata ' n order
EtherCAT Get State ‘
fen ~
tatus = f—
]
Cycle contral
Go fo Op
[NI
n
-
q)
» Op State Model
-

> {Fomen }—sfsror

Stop Simulation

Copyright 2020 The MathWorks, Inc. if an eror occurred

in any of the SO commands

Figure 1: EtherCAT model for sequencing through CoE commands after pausing initialization at
PreOp state

Configure the Model

Open the parameter dialog for the EtherCAT Init block and observe the pre-configured values. The
EtherCAT subordinate devices that are daisy chained together with Ethernet cable is a Device, also
referred to as an EtherCAT network. The Device Index selects one such chained EtherCAT network.
The Ethernet Port Number identifies which Ethernet port to use to access that Device. The EtherCAT

16-68

EtherCAT Protocol Sequenced Writing CoE Subordinate Device Configuration Variables

Init block connects these two so that other EtherCAT blocks use the Device Index to communicate
with the subordinate devices on that EtherCAT network.

If you only have one connected network of EtherCAT subordinate devices, and you have only reserved
one Ethernet port with the Ethernet configuration tool, use Device Index = 0 and Ethernet Port
Number = 1.

Create an ENI File for a Different Set of Subordinate Devices

If you need to create a new ENI file you need to use a third-party EtherCAT configurator such as
TwinCAT 3 from Beckhoff® that you install on a development computer. The EtherCAT configuration
(ENTI) file preconfigured for this model is Stack4 BS 1ms.xml.

Each ENI file is specific to the exact network setup from which it was created (for example, the
network discovered in step 1 of the configuration file creation process). The configuration file
provided for this example is valid if and only if the EtherCAT network consists of an
EK1100+EL1202+EL2202+EL3102+EL4032. If you have a different set of EtherCAT subordinate
devices this example works, but you need to create a new ENI file that uses your devices.

For overview of the process for creating an ENI file, see “Configure EtherCAT Network by Using
TwinCAT 3”.

If you use different subordinate devices, you need to consult the manual for your devices and find the
CoE mapping. Using that mapping, you need to change the SDO commands in the SDO commands
in order subsystem to use objects on your devices.

Build, Download, and Run the Model
To build, download, and run the model:

1 In the Simulink Editor, from the targets list on the Real-Time tab, select the target computer
on which to run the real-time application.

2 Click Run on Target.

If you open the two host side scopes by double clicking each, data is relayed from the target
computer to the development computer and is displayed.

Included in the model is the ability to control the amplitude of the cycling motion. With the Run on
Target button, the slider is active and connected to the Amplitude constant block.

The model is preconfigured to run for 15 seconds. If you want to run the model longer, pull down the
Run on Target menu and change the number on the bottom line. Press the green arrow to configure,
build, and run.

Display the Target Computer Data

If you run the model using the Run on Target button, external mode is connected and you can
double click the scope blocks and see the data on the development computer. The Display blocks
also work.

When using Run on Target, the Scope block shows the DC timing error between the main device
code on the target computer and the first DC enabled subordinate device. Because the error is
returned as nanoseconds, this graph shows that the timing difference settles down to the order of 3-5
microseconds (3000 to 5000 nanoseconds) difference between the DC enabled subordinate devices

16-69

16 simulink Real-Time Examples

16-70

and the target machine running the code. The residual scatter reflects task scheduling variability in
the target computer RTOS.

Scopel shows the progression of EtherCAT states, from idle to Init to PreOp, SafeOp and finally Op
state. SafeOp is only entered briefly and only shows up as the value 4 for a few time steps before the
switch to Op state. Since this model uses the distributed clocks mechanism, the switch to Op state
only occurs once the timing error settles down.

Scope2 shows the status outputs of the 5 async SDO blocks inside the subsystem. Each SDO block is
enabled to write for one time step, then switches to status = 1 (busy) for a few time steps, then on
successful completion status = 2 (done) for one time step. If a block encounters an error, status = 3
(error) for one time step. On an error, the Cycle control embedded MATLAB code block stops the
sequence and sets the error output which stops the model. In that case, the failing block has output
an error code that is displayed on Displayl. This display is zoomed into the interval just after state
went to PreOp (=2) state.

4 Scope2 - o x

Scope3 shows several of the outputs from the Cycle control block. The first 5 are the enable signals,
made true one at a time by Cycle control. Then the oprequest output is true for one time step to
trigger the request to proceed to Op state. This display is zoomed in to the same interval as in
Scope2.

EtherCAT Protocol Sequenced Writing CoE Subordinate Device Configuration Variables

When the requested SDO commands are complete and the state has progressed to Op state, the done

signal is set to true for the remainder of execution. The rest of your model goes into the Op State
Model subsystem.

If you need a different number of SDO commands to execute before Op state, you need to edit the
Cycle control embedded MATLAB code block and modify the persistent array that is currently sized
to have length 5, the same as the number of SDO commands being requesting.

If you run the model from the command line, you can use the Simulation Data Inspector to view any

signal that has been marked for signal logging. Signals marked for signal logging have a dot with two
arcs above it in the model editor.

See Also

* “EtherCAT Protocol Sequenced Writing SoE Subordinate Device Configuration Variables” on page
16-62

* “EtherCAT Protocol Detect Network Failure and Reset” on page 16-57

* “Modeling EtherCAT Networks”

* “Configure EtherCAT Network by Using TwinCAT 3”

16-71

16 simulink Real-Time Examples

Simple ASCII Encoding/Decoding Loopback Test (with
Baseboard Blocks)

16-72

This example model shows how a single floating point number can be converted to ASCII and
transmitted over a serial link. The sending serial port and receiving serial port can be in the same
system or in different systems.

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples', 'slrt ex serialbaseboardsimple:

ﬁu 1 E"‘SG'I' 1] p=| ¥MT Legacy Serial Port 1 FIFO ————]
ASCII Encode
Baseboard
Sarial F
: FIFD ASCI C]
[|- |-
———®|XMT Legacy Serial Port 2 FIFO E D D e | o
FIFO read ASCI Decode Scope ASCI Decode
Baseboard
Serial F1

Copyright 2004-2020 The MathWorks, Inc.

See Also

o “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

ASCII Encoding/Decoding Loopback Test

ASCIl Encoding/Decoding Loopback Test

This model shows how to send ASCII data over a serial link.

The ASCII Encode block generates a message with three different sub messages along with some
extraneous data to show how the FIFO Read HDRS block can remain synchronized to the valid byte
stream even in the presence of transmission errors.

The FIFO Read HDRS block can handle an arbitrary number of headers; just add them as strings to
the cell array in the block parameters dialog box. The messages must share the same termination
string. In this example, it is a carriage return followed by a line feed: "\r\n".

open system(fullfile(matlabroot, 'toolbox"', 'slrealtime’', 'examples','slrt ex serialasciitest'))
set param('slrt ex serialasciitest','StopTime','30");
sim('slrt ex serialasciitest')

> ASCI
In'l"l D ecode !
: ASCI Decode 3
B
iuE 1 asc oln FIFD . FIFQ ol ASCI > ol
P 2 L L F | F 2 D 1 b »
REREN >3 Encode Write Read HDRS Decode > Scope ASCI Decode
ASCI Encode 1 FIF O write 1 3 ASCI Decode
FIFO ASCII read »lp ASCI
'ﬁl.,' v Dacode
ASCI Decode 4
Copyright 2004-2019 The MathWarks, Inc.
iy = = EL
File Tools View Simulation Help k]

- BOP® =- Q- T |Fd-

Ready T=10.000

See Also

» “RS-232 Serial Communication”
» “RS-232 Legacy Drivers”

16-73

16 simulink Real-Time Examples

ASCII Encoding/Decoding Loopback Test (with Baseboard
Blocks)

This example model shows how to send ASCII data over a serial link.

The ASCII Encode block generates a message with three different sub messages along with some
extraneous data to show how the FIFO Read HDRS block can remain synchronized to the valid byte
stream even in the presence of transmission errors.

The FIFO Read HDRS block can handle an arbitrary number of headers; just add them as strings to
the cell array in the block parameters dialog box. The messages must share the same termination
string. In this example, it is a carriage return followed by a line feed: "\r\n".

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port and legacy serial port 2).
You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples', 'slrt ex serialbaseboardasciit«

T 1 aso
P > B{XMT Legacy Serial Part1 FIFO ——»—
e b p|3 Encode

ASCIl Encode 1

S| ascn
* D Decods !

ASCI Decode 3
1
L
———P{XMT Legacy Serial Pot2 FIFO pp_ FFC 5 pip ASCH 4L (]
- Read HDRS Diecode — wl AsCH Decode
3 ASCI Decode 4 Scope ASCI Decode
FIFO ASCII read
o ascn
gk Decode !

ASCI Decode 5

Copyright 2004-2019 The MathWorks, Inc.

See Also

16-74

ASCII Encoding/Decoding Loopback Test (with Baseboard Blocks)

e “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

16-75

16 simulink Real-Time Examples

ASCII Encoding/Decoding Resync Loopback Test

This example model shows the ability of the FIFO Read HDRS block to resynchronize after being
repeatedly disabled and its the ability to resolve errors such as when a message is only partially
complete at the time the read is attempted.

The Switch block alternates between the first and last parts of the message on successive sample
times. This mimics a worst case scenario where the model updates before the message construction
is complete. As a result, sometimes only part of the message is received. The second pulse generator
alternately enables and disables the FIFO Read HDRS block.

Scope 1 graphs the decoded sine wave data received at each time step. When the Pulse Generatorl
block outputs a 0, the count from the FIFO Read HDRS block is 0. When it outputs a 1, the read
catches up by throwing away extra data and returns the last complete value found in the FIFO. Scope
2 indicates when new data is present.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’', 'examples', 'slrt ex serialasciisplit'))
set param('slrt ex serialasciisplit','StopTime','30"');
sim('slrt ex serialasciisplit')

> ASCI
Jﬁl\r' 1 Encode o
ASCI Encode
B
BN 4PN »p FFO F FFo plp ASCI v ()
_'_i_ _M_ _L_ _;_'_. v Write Read HDRS v Decode Soope ASCH Decode
FIF D write 1 FIFD ASCI read ASCI Decode 1
ASCH ™ >]
Encode NEREN L Scope FIFO Read HORS _
B
ASCI Encode 3 i

Copyright 2004-201% The MathWaorks, Inc.

See Also

J

e “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

16-76

ASCII Encoding/Decoding Resync Loopback Test (with Baseboard Blocks)

ASCII Encoding/Decoding Resync Loopback Test (with
Baseboard Blocks)

This model shows the ability of the FIFO Read HDRS block to resynchronize after being repeatedly
disabled as well as the ability to resolve errors such as when a message is only partially complete at
the time the read is attempted.

The Switch block alternates between the first and last parts of the message on successive sample
times. This mimics a worst case scenario where the model updates before the message construction
is complete. As a result, sometimes only part of the message is received. The second pulse generator
alternately enables and disables the FIFO Read HDRS block.

Scope 1 graphs the decoded sine wave data received at each time step. When the Pulse Generatorl
block outputs a 0, the count from the FIFO Read HDRS block is 0. When it outputs a 1, the read
catches up by throwing away extra data and returns the last complete value found in the FIFO. Scope
2 indicates when new data is present.

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples', 'slrt ex serialbaseboardasciis

16-77

16 simulink Real-Time Examples

ASCI
.ﬁu > Encode D

ASCI Encode
HH —.
P L B{XMT Legacy Serial Port1 FIFO ———]
+H | —
ASCH
Encode
ASCIl Encode 1
——=—®|XMT Legacy Serial Port2 FIFO *F Fo 1 | ASCH | D
Read HDRS "7 Decode ASCH Decode
FIFD ASCI read ASCI Decode 1 Scope ASCI Decode
+ e FIFO Read HDRS
Scope FIFO Read HDRS
—
Copyright 2004-2020 The MathWarks, Inc.
See Also

¢ “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

16-78

Binary Encoding/Decoding Loopback Test

Binary Encoding/Decoding Loopback Test

This model shows how to send Binary data over a serial link.

The transmitted data are: [8,5,170,1,N,170,2,44,M]. This byte stream contains two messages
along with other elements:

» The first byte, 8, is a count of the remaining number of bytes in the stream.

* The second byte, 5, is an extraneous value (EV).

* [170,1,N] is message 1 (M1).

« [170,2,44,M] is message 2 (M2).

* N and M are numbers between 0 and 255 that are incrementing and decrementing, respectively.
Even though the data stream includes extraneous bytes (5 in this case), the FIFO Read BINARY block

can handle and ignore this extra information. Scope 1 displays the received message 1 data. Scope 2
displays the received message 2 data.

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples', 'slrt ex serialbinarytest'));

First headar byte

Second header byte

Incrementing counter

¥

FIFQ Read 1
6 bytes were read.
The remaining 3 bytes
can be ignored.
N
Mt ﬁ]m 1] »p FIFO ¢ plp. FFO Seeperro e withh:n:fﬂzgre[11m 1]
M2 (170 2 44 W] Write Read BINF\R‘«‘2
FIFD write 1 FIFO bin read Bvie Count
Vieeeogs O — :
Construction First header byte
Soope FIFO Read 2 Second header byte
Fized data byte
]

FIFQ Riead 2 Dacrementing counter

6 bytes were read.
The remaining 2 bytes
can be ignored.

Message 2
with header [170.2]

Copyright 2004-2013 The MathWarks, Inc.

See Also

e “RS-232 Serial Communication”

* “RS-232 Legacy Drivers”

16-79

16 simulink Real-Time Examples

Binary Encoding/Decoding Loopback Test (with Baseboard
Blocks)

16-80

This model shows how to send Binary data over a serial link.

The transmitted data are: [8,5,170,1,N,170,2,44,M]. This byte stream contains two messages
along with other elements.

» The first byte, 8, is a count of the remaining number of bytes in the stream.

* The second byte, 5, is an extraneous value (EV).

« [170,1,N] is message 1 (M1).

« [170,2,44,M] is message 2 (M2).

* N and M are numbers between 0 and 255 that are incrementing and decrementing, respectively.

Notice that when the data contains extraneous bytes (5 in this case) the FIFO Read BINARY block can
handle and ignore this extra information.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2 data.

To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples', 'slrt ex serialbaseboardbinary
See Also

* “RS-232 Serial Communication”
» “RS-232 Legacy Drivers”

Binary Encoding/Decoding Loopback Test (with Baseboard Blocks)

EV: [5]
M1:[170 1 N]
M2: [170 2 44 M]

Constructed Message

h

Massage
Canstruction

¥MT Legacy Serial Port 1 FIFO b————]

Copyright 2004-2019 The MathWarks, Inc.

O

)

.
FIFO Read BINARY 1
= Scope FIFO Read
1
) FIFD
XMT Legacy Serial Port 2 FIFQ [— FRead BINARY;
- >
FIFO bin read FIFO Read BINARY 2

EBINARY 1

Scope FIFO Read BINARY 2

16-81

16 simulink Real-Time Examples

Binary Encoding/Decoding Resync Loopback Test

This model shows the ability of the FIFO Read BINARY block to handle messages that are interrupted
and only partially complete. This is a worst case example where every message is interrupted.

The Segmented Message Constructor subsystem contains blocks that prepare and send only parts of
messages on each time step.

On the receive side, the FIFO read BINARY block is looking for two different two-character headers.
Ifit finds [170,1] it outputs [3,170,1,N] on port 1. If it finds [170, 2], it outputs
[4,170,2,44,M] to port 2. N and M are numbers between 0 and 255 that are incremenenting and
decrementing, respectively.

If a message header is not found in the FIFO on a given time step, then that port will output 0. The
outputs are padded to the maximum vector size specified in the FIFO Read BINARY block. In this
example output vectors are 6 in width. The count in the first element tells how many elements are
significant.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2 data.

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’', 'examples', 'slrt ex serialbinarysplit'));

I:I Byte Couwnt, Dor 3

First header byte
Second header byte

Incrementing counter

6 bytes were read.
The remaining 3 bytas
can be ignored.

» (]

Scope FIFO Read 1 piassage 1

1
FIFO FIFD Read 1)
Fread BINARY with header [170.1]

FIFD
Write

D F

3
3

FIFO Read 2

Segmented FIFC write 1 FIFO bin read

Message Construction > D |—| Byte Count, 0 or 4

First header byte
Scope FIFQ Read 2

Second header byte
Fixed data byte

*

Decrementing counter

& bytes were read.
The remaining 2 bytes
can be ignored.

Massage 2
Copyright 2004-2019 The Math\Waorks, Inc. with header [170,2]

See Also

e “RS-232 Serial Communication”

* “RS-232 Legacy Drivers”

16-82

Binary Encoding/Decoding Resync Loopback Test (with Baseboard Blocks)

Binary Encoding/Decoding Resync Loopback Test (with
Baseboard Blocks)

This model shows the ability of the FIFO Read BINARY block to handle messages that are interrupted
and only partially complete. This is a worst case example where every message is interrupted.

The Segmented Message Constructor subsystem contains blocks that prepare and send only parts of
messages on each time step.

On the receive side, the FIFO read BINARY block is looking for two different two-character headers.
If it finds [170, 1] it outputs [3,170,1,N] on port 1. If it finds [170, 2], it outputs
[4,170,2,44,M] to port 2. N and M are numbers between 0 and 255 that are incrementing and
decrementing, respectively.

If a message header is not found in the FIFO on a given time step, then that port will output 0. The
outputs are padded to the maximum vector size specified in the FIFO Read BINARY block. In this
example output vectors are 1024 in width. The count in the first element tells how many elements are
significant. The Demux blocks discard the uninteresting parts of the signal.

Scope 1 displays the received message 1 data. Scope 2 displays the received message 2 data.
To test this model:

1 The target computer must have two legacy serial ports.
2 Connect legacy serial port 1 to legacy serial port 2 with a null modem cable.

This example is configured to use baseboard serial ports (legacy serial port 1 and legacy serial port
2). You can also use legacy serial port 3 and legacy serial port 4 by changing the board setup in the
Baseboard blocks. Other serial blocks could be used in place of the Baseboard blocks.

open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples', 'slrt ex serialbaseboardbinary:

B XMT Legacy Seral Port 1 FIFO f—#—]

Segmentad
Message Construction

FIFO Read BIMARY 1
Scope FIFO Read BINARY 1

———M#XMT Legacy Serial Port2 FIFO F, FIFO 1
= Faaey "| "Read BINARY,

FIFC bin read » C]
FIFD Read BINARY 2
— Scope FIFD Read BINARY 2

Caopyright 2004-2019 The MathWorks, Inc.

16-83

16 simulink Real-Time Examples

See Also

o “RS-232 Serial Communication”
* “RS-232 Legacy Drivers”

16-84

Target to Development Computer Communication by Using TCP

Target to Development Computer Communication by Using TCP

This example shows how to use TCP blocks to send data from the target computer to MATLAB®
running on the development computer. This example uses a target computer located at IP address
192.168.7.5.

The TCP Send block in the server real-time application slrt ex target to host TCP sends data
from the target computer to the TCP/IP object that is created in MATLAB on the development
computer. The MATLAB m-script sends the received data back to the real-time application.

To open this example, in the MATLAB Command Window, type:

open system(fullfile(matlabroot, 'toolbox','slrealtime’, 'examples’', 'slrt ex ta
rget to host TCP'))

Open, Build, and Download Server Application

Open the model.

model = 'slrt ex target to host TCP';

md1l0pen = 0;

systems = find system('type', 'block diagram');

if ~any(strcmp(model, systems))
md10pen = 1;
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples', model));

end
Data » Unpack —
TCP Sarw " serverRacData =
CP Server Recsive TCP pachets using
Enable Status == | Enable P
O p—— = Server: 10.10.10.15:6027 Byle Unpacking
Length =
g cerverRacLen -
TCP Server TCP Receive
Transfer Function
DODOD o .| numis) . | Enabl
» » #{Enable
den(s)
Wl SendTCPpacketsusing o =
pr—— Pack [Dalt gerver 101010155027 SRS -
»
Byte Packing > Length

TCP Sand1

slrt_ex_targst_fo_host_TCP
Simulink Real-Time example model

Copyright 2020 The MathWorks, Inc.

Build Model and Download to Target Computer

set param(model, 'RTwWVerbose', 'off');

set param(model, 'StopTime','10");

targetIP = '192.168.7.5"';

set param([model, '/TCP Server'], 'serverAddress',targetIP);
evalc('slbuild(model)"');

tg = slrealtime;

load(tg,model);

16-85

16 simulink Real-Time Examples

16-86

Close the Model
if (mdl0pen)
bdclose(model);
end
Create TCP/IP Object in MATLAB on Development Computer

Create a TCP/IP object and connect the TCP/IP object to the development computer.
t = tcpclient(targetIP,5027);
Run Real-Time Application on Target Computer

start(tg);
pause(3);

Read Data Packets and Send Back to Target Computer

Read from the target computer and write back.

tic

while (toc<5)
data = read(t,16);
write(t,data);

end

Error using matlabshared.asyncio.internal.MessageHandler/onError
An established connection was aborted by the software in your host machine

Error in matlabshared.asyncio.internal.Stream/wait (line 184)
drawnow('limitrate');

Error in matlabshared.asyncio.internal.OutputStream/drain (line 206)
status = obj.wait(@(obj) obj.getDataAvailable() == 0);

Error in matlabshared.transportlib.internal.asyncIOTransportChannel.AsyncIOTransportChannel/writ
obj.AsyncIOChannel.OQutputStream.drain();

Error in matlabshared.network.internal.TCPClient/write (line 957)
obj.TransportChannel.write(varargin{2:end});

Error in matlab.internal.tcpclient.TCPCustomClient/write (line 147)
write(obj.Transport,data);

Error in tcpclient/write (line 595)
write(obj.TCPCustomClient,varargin{:});

Error in SlrtTargetToHostCommunicationUsingTCPExample (line 59)
write(t,data);

Error in evalmxdom>instrumentAndRun (line 116)
text = evalc(evalstr);

Error in evalmxdom (line 21)
[data, text,laste] = instrumentAndRun(file,cellBoundaries,imageDir,imagePrefix,options);

Error in publish (line 213)
dom = evalmxdom(file,dom,cellBoundaries,prefix,imageDir,outputDir,options);

Target to Development Computer Communication by Using TCP

Error in publishMainFile (line 19)
publish(metadata.main,opts);

Error in examples.previewExampleInSandbox (line 79)
publishMainFile(metadata, metadata.filepath);

Error in examples.connector.previewExampleInSandbox (line 3)
examples.previewExampleInSandbox(id);

Error using matlabshared.asyncio.internal.MessageHandler/onError
An established connection was aborted by the software in your host machine

Error in matlabshared.asyncio.internal.Stream/wait (line 184)
drawnow('limitrate');

Error in matlabshared.asyncio.internal.OutputStream/drain (line 206)
status = obj.wait(@(obj) obj.getDataAvailable() == 0);

Error in matlabshared.transportlib.internal.asyncIOTransportChannel.AsyncIOTransportChannel/write
obj.AsyncIOChannel.OQutputStream.drain();

Error in matlabshared.network.internal.TCPClient/write (line 957)
obj.TransportChannel.write(varargin{2:end});

Error in matlab.internal.tcpclient.TCPCustomClient/write (line 147)
write(obj.Transport,data);

Error in tcpclient/write (line 595)
write(obj.TCPCustomClient,varargin{:});

Error in SlrtTargetToHostCommunicationUsingTCPExample (line 59)
write(t,data);

Error in evalmxdom>instrumentAndRun (line 116)
text = evalc(evalstr);

Error in evalmxdom (line 21)
[data, text,laste] = instrumentAndRun(file,cellBoundaries,imageDir,imagePrefix,options);

Error in publish (line 213)
dom = evalmxdom(file,dom,cellBoundaries,prefix,imageDir,outputDir,options);

Error in publishMainFile (line 19)
publish(metadata.main,opts);

Error in examples.previewExampleInSandbox (line 79)
publishMainFile(metadata, metadata.filepath);

Error in examples.connector.previewExampleInSandbox (line 3)
examples.previewExampleInSandbox(id);

Stop Real-Time Application on Target Computer

stop(tg);

16-87

16 simulink Real-Time Examples

Close TCP/IP Object on Development Computer
clear t;
View Signal Received on Target Computer

Simulink.sdi.view();

16-88

Target to Development Computer Communication by Using TCP

W serverRecData(1) M serverRecData(2)

31.682 21.54 21.56 21.58 21.60 62 31.64 21.66 21.68 21.70 .72 31.74 231.78 31.78 21.80 21.82 21.84 21.86 2182 31.00 21.92 21.04 21.06 21.08

16-89

16 simulink Real-Time Examples

Target to Host Transmission by Using UDP

This example shows how to use UDP blocks to send data from a target computer to a development
computer. This example uses a target computer located at IP address 192.168.7.5 and uses a
development computer located at IP address 192.168.7.2.

The transmit real-time application slrt ex target to host UDP runs on the target computer and
send signal data to the UDP object that the script creates in MATLAB on the development computer.

When using the UDP protocol for communicating data to or from the target computer, consider these
issues:

* The Simulink model on the development computer runs as fast as it can. The model run speed is
not synchronized to a real-time clock.

* UDP is a connectionless protocol that does not check to confirm that packets were transmitted.
Data packets can be lost or dropped.

* On the target computer, UDP blocks run in a background task that executes each time step after
the real-time task completes. If the block cannot run or complete the background task before the
next time step, data may not be communicated.

* UDP data packets are transmitted over the Ethernet link between the development and target
computers. These transmissions share bandwidth with the Ethernet link.

For more information about UDP and Simulink Real-Time, see “UDP Communication Setup”.

Open Model, Build, and Load Real-Time Application

This model drives a first order transfer function with a square wave signal and sends the transfer
function input and output signals to the development computer using UDP. To open the model, in the
MATLAB Command Window, type:

open _system(fullfile(matlabroot, 'toolbox"', 'slrealtime', 'examples', 'slrt ex ta
rget_to host UDP'));

model = 'slrt ex target to host UDP';
mdlOpened = 0;
systems = find system('type', 'block diagram');
if ~any(strcmp(model, systems))
mdlOpened = 1;
open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’', 'examples',model));
end

16-90

Target to Host Transmission by Using UDP

ooaoao
00

Transfer Function

munish

den(s)

¥

Pack Data

sanverSendData Sand UDP packsts
- Local: <Use host-target conmection=:25000
T 10010.10.1:8002

¥
¥

Length

Data > Unpack "
Receive UDF packets »—
—
Local: 10.10.10.15:25000 Bvis Unnackin
From: 10.10.10.1 " Fa .
Length

slri_ex_target_to_host UDP

Simulink Real-Time example model

Copyright 2020 The MathWorks, Inc.

Build the model and download to the target computer.

* Configure for a non-Verbose build.

* Mark the Byte Unpacking block output for data logging.
* Build and download application.

* Open the Simulation Data Inspector.

This code shows how to mark signals programmatically for data logging. You can also mark signals
for data logging in the Simulink Editor. You can view the logged data in in the Simulation Data
Inspector.

set param(model, 'RTWVerbose', 'off');

set param(model, 'StopTime','10");

targetIP = '192.168.7.5';

set param([model,'/UDP Receive'l], 'ipAddress',targetIP);
hostIP = '192.168.7.2"';

set param([model, '/UDP Send'], 'toAddress',hostIP)

set param([model, '/UDP Receive'l], 'fmAddress', hostIP)
handle = get param([model, '/Byte Unpacking '], 'PortHandles');
Outport = handle.Outport(1);
Simulink.sdi.markSignalForStreaming(Outport, 'on');
evalc('slbuild(model)"');

tg = slrealtime;

load(tg,model);

Close the model if it is opened.

16-91

16 simulink Real-Time Examples

16-92

if (mdlOpened)
bdclose(model);
end
Create UDP object in MATLAB on Development Computer
uByte = udpport("IPV4","LocalHost",hostIP,"LocalPort",8002);
Run Model on Target Computer
start(tg);
Read Data and Write Development Computer
tic;
while (toc<10)
data = read(uByte, 16);
write(uByte,data,targetIP,25000);
data = read(uByte, 16);
end
View Signals in Simulation Data Inspector

Simulink.sdi.view;

Target to Host Transmission by Using UDP

W Byte Unpacking :1(1) m Byte Unpacking :1{2)}
11

-0.1

-02

-03

04

05

-08

-07

Disconnect UDP Object on Development Computer

clear uByte;

16-93

16 simulink Real-Time Examples

Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive
Blocks

This example shows how to use Ethernet blocks to send and receive Ethernet packets on a target
computer.

On the development computer, a UDP Send block sends a sample packet. On the target computer, this
packet is received by an Ethernet Receive block, individual bytes in the payload are manipulated, and
the resulting payload is sent out of the target computer by an Ethernet Send block.

The Ethernet blocks work only on the target computer.

These blocks can work in the default signal input/output mode and a message input/output mode.
Both modes are shown in this example.

Set Up Ethernet Send-Receive Model

Open the target model slrt_ex_ethernetSendReceive.

mdll = 'slrt ex ethernetSendReceive';
open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime', 'examples',mdll));

Recsive Ethemet packets)) =, Sand Ethernst packets
Interfacs: wmd =Mu sli_ex_ethemetProcessPackets y——p 16 — Interace: wmi

MATLAE Systemn Objact

Systemn obj to tag with WLAN 24, 25, 26

afs—

Data] 1 ¥ Data
Receive Ethemet packets ImE i . . Sand Ethernst packets
Interface: wmi K . Interface: wmil
Langth L 2 | Length

Subsystem
Subsystem to tag with WLAN 32

Copyright 2021-2022 The Math\Works, |

The target model requires a valid Interface Name parameter value in the two Receive blocks and
the two Send blocks. You can obtain this information on the target computer by using the QNX
Neutrino RTOS ifconfig command.

This example uses interface name wm0 for the target IP address '192.168.7.5'".

Enter the interface name wm0 into the four blocks in the model:

targetIface = 'wmQ';
set param('slrt ex ethernetSendReceive/Ethernet Receive', 'InterfaceName', targetIface)

16-94

Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks

set param('slrt ex ethernetSendReceive/Ethernet Receivel', 'InterfaceName', targetIface)
set param('slrt ex ethernetSendReceive/Ethernet Send', 'InterfaceName', targetIface)
set param('slrt ex ethernetSendReceive/Ethernet Sendl', 'InterfaceName', targetIface)

Operations in the Ethernet Send-Receive Real-Time Application

Every packet sent from the development computer to the target computer is received by each
Ethernet Receive block on the target.

The two Receive and corresponding Send blocks demonstrate the operation in signal mode and
message mode, where Simulink messages represent the packets.

In signal mode, 'slrt ex ethernetSendReceive/Subsystem ' uses Simulink blocks to add a 802.1Q
VLAN tag 32 and send it back to the host at a port incremented by 1. If the original sender port was
8001, the loopback destination port is 8002.

In the messages mode, slrt_ex _ethernetSendReceive/MATLAB System Object receives the
packets. For each packet it then creates three new packets with the VLAN tags 24, 25, and 26.

Manipulating the Ethernet Header
For details about Ethernet header structure, refer to the standards document for IEEE 802.1Q.

For details about the IPv4 header, refer to RFC 791 for Internet Protocol https://
datatracker.ietf.org/doc/html/rfc791

These changes to the header occur in the Subsystem and the System object:

1 Switch source and destination MAC address: Swap bytes 1-6 with bytes 7-12.

2 Switch source and destination IP Address: Swap bytes 27-30 with bytes 31-34.

3 Switch source and destination port numbers: Swap bytes 35-36 with bytes 37-38.
4 Increment the new destination port number by 1: Add 1 to the value of byte 38.

5

Disable checksum verification: Set bytes 41-42 to 0. Without this change, the packets that are
sent back to the development computer would be discarded, since checksum value would be
incorrect. For details on checksum verification including recalculating new checksums, refer to
RFC: 791 for Internet Protocol.

6 Add 802.1Q VLAN tag: IEEE 802.1Q adds a 4-byte VLAN tag between the Source/Destination
MAC address and Length/Type fields of an Ethernet frame to identify the VLAN to which the
frame belongs.

For the VLAN tags:

1 Make space for the VLAN tag by shifting bytes 13 onward to the right by 4 to the byte location
starting at 17.

2 Insert the VLAN tag at byte locations 13-16. For example, to add tag 24, insert ©x81 0x00 0x00
0x18. Here the first 2 bytes correspond to a Tag protocol identifier (TPID), which is a 16-bit field
set to a value of 0x8100 to identify the frame as an IEEE 802.1Q-tagged frame. The other 2 bytes
set the Tag control information (TCI) to 0x0018, which includes the VLAN Identifier that
corresponds to 24.

Open and Set Up Packet Source Model on Development Computer

Open model slrt_ex udpsend. Set the IP address.

16-95

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc791

16 simulink Real-Time Examples

enablaftTime I

developmentIP = '192.168.7.2";

mdl2 = 'slrt ex udpsend';
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples',mdl2));
set param('slrt ex udpsend/UDP Receivel', 'ipAddress', developmentIP)

G .

2

. |

SendPacketSubsystem |:|

Diat >
Receive UDP packets =8
Local: 182.1668.7.2:8002
rom: Any |P address Length >

16-96

Copyright 2021 The MathWorks, Inc.

This model uses UDP blocks to send one packet out when the execution time is 2 seconds.

Set the To IP address parameter on slrt ex udpsend/SendPacketSubsystem/UDP Send to
the IP address of the target computer.

targetIP = '192.168.7.5"';
set param('slrt _ex udpsend/SendPacketSubsystem/UDP Send', 'toAddress', targetIP)

Run Ethernet Send-Receive Real-Time Application on Target Computer

Run the target model on the target using the Run on Target button. Or, in the MATLAB Command
Window, type:

evalc('slbuild(mdll)"');

tg = slrealtime;

load(tg,md11)

start(tg)

Simulate the UDP Send Model on the Development Computer

Simulate the model.

Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks

4.5 4

4.0 4

0.5 4

set param('slrt ex udpsend', 'SimulationCommand', ‘'start')

Open Simulink Data Inspector

Open the Simulation Data Inspector and observe the new packets created on the target computer. In
the MATLAB Command Window, type:

Simulink.sdi.view;

The Simulation Data Inspector shows that four packets are received by the UDP Receive block
through four instances of the data length changing to five (the UDP packet size).

B UDF Receivel:2

Every simulation sends out just one packet at time = 2 seconds.

16-97

16 simulink Real-Time Examples

16-98

The Ethernet send-receive real-time application responds with four packets, which contain the same
payload but with VLAN tags 24, 25, 26, and 32.

Windows does not expose the VLAN tags to applications. Due to this using a packet capture program
such as Wireshark does not show VLAN tags.

The development computer model shows four UDP packets were received. These are UDP blocks, and
Ethernet header information is not output.

For Windows systems that have connections that block the VLAN tag (such as VM Ethernet
connections or a network interface between the development and target computers), these
connections may prevent the packets from appearing on the output display.

One way to see the tags is by using QNX Neutrino RTOS tcpdump command on the target computer
while logged in as user root by using password root. Use the command:

tcpdump -i <targetIface> -v -e vlan

For targetIface, use the interface name wmoO from the Set Up Ethernet Send-Receive Model
section.

Close Models

bdclose('all');

Synchronize PTP Clocks on Two Target Computers

Synchronize PTP Clocks on Two Target Computers

This example shows how to synchronize clocks on two target computers by using Precision Time
Protocol (PTP).

System Setup for PTP

To run the PTP daemon and build a real-time application that uses PTPE, the Speedgoat I/O Blockset
must be installed. For more information, see “PTP Prerequisites”.

With the Speedgoat I/O Blockset installed, use the Speedgoat showPtpInterfaces utility to check
that PTP support is available on the selected port and the support is configured.

To check the configuration for target computers tgl and tg2, this example uses these commands in
the MATLAB Command window:

speedgoat.showPtpInterfaces('TargetObject', tgl)

Label Index PTPSupport Configuration
{'Host Link'} {'wm0"'} {'No' } {'IP: 192.168.7.5 Subnet: 255.255.255.0'}
{'ETH1' } {'wml'} {'Yes'} {'Not configured' }
{'Onboard' } {'wm2'} {'No" } {'Not configured' }

speedgoat.showPtpInterfaces('TargetObject', tg2)

Label Index PTPSupport Configuration
{'Host Link'} {'wm0'} {'No"' } {'IP: 192.168.7.10 Subnet: 255.255.255.0'}
{'ETH1' } {'wml'} {'Yes'} {'Not configured' }
{'Onboard' } {'wm2'} {'No' } {'Not configured' }

To use PTP, configure the ethernet interface with an IP stack by using the Speedgoat Ethernet
Configuration Tool speedgoat.configureEthernet.

For this example, the ETH1 port for tg1l is set for IP address 10.10.10.21, and the ETH1 port for
tg2 is set for IP address 10.10.10.22.

16-99

16 simulink Real-Time Examples

(4| Speedgoat Ethemet Canfiguration Tool — X

speedgnat

simulation and testing

Target Machine: [TargetPC1 v | Q Connected to Performance Core real-time target machine

Target Configuration:

[]18how Host Link Interface

Interface Label (Index) Configuration IP Address Subnet Mask IP Alias
ETHA fwm1) (IP Protocols v | |1u1u1021 | |2552552550 |
Onboard (wm2) [IP Protocols v | | | | |

[]Show Advanced Settings

After configuring the ETH1 ports on the target computers, connect them to each other by using an
Ethernet cable.

Start PTP Daemons Target Computers

For TargetPC1 tg1l, connect to the target computer and start the PTP daemon as clock transmitter
(master, -W).

tgl = slrealtime('TargetPCl');
connect(tgl);

tgl.ptpd.Command = 'ptpd -L -K -W -b wml';
pause(5);

start(tgl.ptpd)

For TargetPC2 tg2, connect to the target computer and start the PTP daemon as clock receiver
(slave, -Q).

tg2 = slrealtime('TargetPC2');
connect(tg2);

tg2.ptpd.Command = 'ptpd -L -K -g -b wml';
pause(5);

start(tg2.ptpd)

For more information about the PTP daemon options, see the ptpd, ptpd-avb reference page.

16-100

https://www.qnx.com/developers/docs/7.1/index.html#com.qnx.doc.neutrino.utilities/topic/p/ptpd.html

Synchronize PTP Clocks on Two Target Computers

Open Model and Build Real-Time Application

Open the PTP clock receiver model slrt_ex ptp offset time receiver and build the real-time
application.

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples', 'slrt ex ptp offset time recei
evalc('slbuild(''slrt _ex ptp offset time receiver'')');

PTP -
ReadOffset from Client offset from client " @

Model sirt_ex_ptp_offset_time_receiver
Simulink Real-Time example model

Copyright 2022 The MathWorks, Inc.

To confirm PTP clock synchronization, load the real-time application on tg2 and run the application.

load(tg2, 'slrt ex ptp offset time receiver');
start(tg2);

View Clock Offset Between Target Computers

Open the Simulation Data Inspector to observe the offset or difference between transmitter and
receiver clocks. The display shows how the clock offset is reduced as the clocks synchronize.

16-101

16 simulink Real-Time Examples

4\ Simulation Data Inspector - untitled* — O

Q G CEHEARMESE = W o

(O’

Inspect Compar offset from client
Filter Signals
+ MAME |
= Run 1 :
m CEZHE ¢
E 0.001
) o002 4
| -
-0.003
: 0.004 |
L]
. -0.005 |
L]
Archive B~
Properties ~ 0 10 20 30 40 50 &0 70 80 g0 100

Close All Files
bdclose('all');

16-102

Apply Simulink Real-Time Model Template to Create Real-Time Application

Apply Simulink Real-Time Model Template to Create Real-Time
Application

This example shows how to use the Simulink® Real-Time™ template to create a Simulink® model.
Starting from the model template provides a new model that has configuration parameters set up for
building a real-time application.

To see the Simulink Real-Time commands for each operation in this example, view the example code.
Create Simulink Model from Template

To create a Simulink model from the Simulink start page, in the MATLAB® Command Window, type:
simulink

Select the Simulink Real-Time template from the start page and create the exampleSlrealtimeApp

model. Or, in the Command Window, use the Simulink.createFromTemplate command. See code
for this script for full syntax.

oy AN

This model has been set up with FixedStepDiscrete sohver,
stop time=10s, and sample time = 1ms. Click here to

adjust these options.

Blocks, Connections, and Data Logging in the Model

The Simulink Real-Time model template contains a Gain block that connects a Signal Generator to a
Scope block. The Gain block output is marked for logging with the Simulation Data Inspector (SDI).

Simulate Real-Time Application and View Logged Data
Build the real-time application, run it on the target computer, and view the logged data:
1. Make sure that the development computer has a connection to the target computer.

2, Build the model and download the real-time application to the target computer. On the Real-Time
tab, click Run on Target. Or, use the slbuild command and the load command.

3. Run the real-time application and log data by using the Run on Target button.

4. Open the Simulation Data Inspector by double-clicking the Simulation Data Inspector icon on the
Gain block output signal or by using the Simulink.sdi.view command.

More Information

* “Create and Run Real-Time Application from Simulink Model”
* “Configure and Control Real-Time Application by Using Simulink Real-Time Explorer”

16-103

16 simulink Real-Time Examples

* Simulation Data Inspector

16-104

Insert Event into Execution Profiling Stream

Insert Event into Execution Profiling Stream

This example shows how to use the Log Event block to insert a user-defined event into the execution
profiling event stream. For more information about execution profiling, see “Execution Profiling for
Real-Time Applications” on page 10-7.

Open Model
To open the model, in the MATLAB Command Window, type:

open system(fullfile(matlabroot, 'toolbox', 'slrealtime’, 'examples', 'slrt ex lo
g event'));

mdl = 'slrt ex log event';
mdl0pened = 0;
systems = find system('type', 'block diagram');
if ~any(strcmp(mdl, systems))
md1l0pened = 1;
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, "examples',mdl));
end

¥
—

| == 2

Log Event

Compare

. - E.ﬁ—h-[>o—> T Log Event

Compare 1

Caopyright 2020 The Math\Works, Inc.

Set Parameters to Measure Function Execution Times

Open the Configuration Parameters dialog box. Select Code Generation > Verification.

For Measure function execution times, select Detailed (all function call sites). The Measure
task execution time check box is checked and locked. Click OK.

Or, in the MATLAB command window, type:

set param('slrt ex log event', 'CodeProfilingInstrumentation', 'Detailed');
set param('slrt ex log event', 'StopTime','30');

Build and Load Real-Time Application

Build the model and download to the target computer.

16-105

16 simulink Real-Time Examples

evalc('slbuild(mdl)");
tg = slrealtime;
load(tg,mdl);

Profile Execution

Start the profiler and then execute the real-time application.

startProfiler(tg);
start(tg);
pause(20)
stopProfiler(tg);
stop(tg);

Display Execution Profile

Retrieve the Profiler data. Display the user-defined event in a table.

profiler data = getProfilerData(tg);
profiler data.EventTrace.etData

Processing data on target computer ...
Transferring data from target computer ...
Processing data on host computer ...

ans =
2x6 table
Channel Timestamp Event Value CPU ModelTime
500 4391975917790188 200 200 3 2
1000 4391975917790188 100 700 1 6.5

The Execution Profile plot shows the allocation of execution cycles across the four processors,
indicated by the colored horizontal bars. The model sections are listed in the Code Execution Profiling
Report. The cores are indicated by the numbers underneath the bars.

Close Model
Close the model if it is opened.
if (mdlOpened)

bdclose(mdl);
end

16-106

Create Listeners for Target Computer Events

Create Listeners for Target Computer Events

This example shows how to define MATLAB® listeners for events that occur on a Simulink® Real-
Time™ target computer. The listeners detect events through a Target object that represents the
target computer. The Target object events monitored by listeners in this example include:

» Target computer connected

* Target computer disconnected

* Target computer loaded with real-time application

» Target computer started running real-time application
» Target computer stopped running real-time application

Open Model and Build Real-Time Application

To show how to work with events that relate to a target object and a real-time application, this
example uses the model slrt ex osc.

model = 'slrt ex osc';
open_system(model);
evalc('slbuild(model)"');
close system(model);

Create Target Object and Event Listeners

This code creates a Target object to represent the target computer and defines MATLAB listeners
for some of the target computer events.

tg = slrealtime;

listenerConnected = listener(tg, 'Connected',@(~,~)disp('Connected to target computer'));
listenerDisconnected = listener(tg, 'Disconnected',@(~,~)disp('Disconnected from target computer!'
listenerLoaded = listener(tg, 'Loaded',@(~,~)disp('Loaded application on target computer'));
listenerStarted = listener(tg, 'Started',@(~,~)disp('Started application on target computer'));
listenerStopped = listener(tg, 'Stopped',@(~,~)disp('Stopped application on target computer'));
Observe Listener Messages from Target Object Events

This code executes a series of target computer operations with pauses between the operations to
provide time to observe the event status messages.

connect(tg);
load(tg,model);
start(tg);
stop(tg);
disconnect(tg);

Connected to target computer

Loaded application on target computer
Started application on target computer
Stopped application on target computer
Disconnected from target computer

Run Script to Observe Listener Operation

To observe the operation of the listeners for the Target object events, run the script.

16-107

16 simulink Real-Time Examples

run CreatelListenersForTargetComputerEventsExample

More About Target Object Events

To list the available Target object events, use the events(tg) function. For more information about
target computer events, see the Target object events list. For more information about MATLAB

listeners, see “Overview Events and Listeners”.

16-108

Control Real-Time Application by Using C# Code

Control Real-Time Application by Using C# Code

oo

Sawtooth Wave

. B]
Wave Coniral

This example shows how to develop a C# program that controls a Simulink® Real-Time™ application
by using the functions from the Simulink Real-Time XIL API support package. The C# example code
shows how to use the XIL C# API calls to load, run, and stop a Simulink Real-Time application. The
example code also shows how to record signal data.

Prepare for APl in C# Program

1. Install the Simulink Real-Time Support Package for ASAM® XIL Standard by using the Add On
Explorer.

2, Copy model slrt_ex pendulum 100Hz to your working folder.

open_system(fullfile(matlabroot, 'toolbox/slrealtime/examples/slrt ex pendulum 100Hz.slx'));

-I\HH-K-“\\-
94 =

\ Proporional Gain

I [
KTs
reference 4’|> —» — n o
::': ’ z-1 integral

ntegeal DiscreteTime

Gain Integrator D—b HudgeFlag

command NudgeFlag

Pendulum pr—
thetad endpasition
numiz) hetal pandp
* > +
—

deniz) feedforward Mudgehit

proportional

Cart —
cartposition

I
T

Caonstant Ref

Pendulum

statefaadback Cart 4

[xd]u j———1x

Pendulum M

Discrete State Estimator

Model slrt_ex_pendulum_100Hz
Simulink Real-Time example model

Copyright 2019-2021 The MathWorks, Inc.

3. Build model slrt_ex _pendulum_ 100Hz.

model = 'slrt ex pendulum 100Hz';
evalc('slbuild(model)"');

4. Create an XIL configuration file. This command uses the default Speedgoat® target machine IP

address 192.168.7.5. Replace full file path to MLDATX with the full file path to the
slrt_ex pendulum_100Hz.mldatx file.

16-109

16 simulink Real-Time Examples

16-110

slrealtime.createPortConfigureFile("configFile.xml","192.168.7.5", 'full file
path to MLDATX');

Create C# Program
1. Open Visual Studio® 2019 and create a project for Console App (.NET core).

2. As project references in visual studio, add ASAM.XIL.Implementation.Testbench.dl1,
ASAM.XIL.interfaces.dll, and MathWorks.ASAM.XIL.Server.dll. These files are available
after you install the support package.

Find ASAM. XIL.Implementation.Testbench.dll and ASAM.XIL.Interfaces.dll in folder
C:\Program Files (x86)\ASAM e.V\ASAM AE XIL API Standard Assemblies 2.1.0\bin.

Find MathWorks .ASAM.XIL.Server.dll in folder C:\ProgramData\MATLAB\SupportPackages
\<release>\toolbox\slrealtime\xil\src\bin\win64.

3. Copy the example C# program myRealTimeAppController. cs content to your current Visual
Studio project. Update the project.

To find file myRealTimeAppController.cs, open this example and view the example folder.

4. Build the solution in your Visual Studio project.

Run the C# Program
1. Run your application at the operating system command prompt. Enter:
appName configFilePath csvFilePath

The parts of this command are:

* Application name
+ Full file path to your configuration file
» Full file path of a CSV file in which the solution is saved

When you run the application, it loads and runs the Simulink Real-Time application

slrt_ex pendulum_100Hz.mldatx on the target computer. While running, the signal data for the

signals slrt _ex pendulum 100Hz/Pendulum:1 and slrt ex pendulum 100Hz:2 are recorded
for about 3 seconds. The data is saved into the CSV file that you selected. When done, the application
stops on the target computer.

2. Check signal data saved in the CSV file.

About Multiple MATLAB Installations

If you have multiple versions of MATLAB® installed, the default operation of the operating system
when you run your C# program is to open the first MATLAB executable that is defined on the system
path. By default, this version is the latest version of MATLAB installed. To optionally select a different
MATLAB version:

* Open the path environment variable and ensure that the selected MATLAB version to use as COM
automation server appears at the top or before other MATLAB paths installed in the system.

Control Real-Time Application by Using C# Code

* Manually set the current MATLAB instance as COM automation server. See regmatlabserver.

16-111

16 simulink Real-Time Examples

Run Real-Time Application by Using Python Script

16-112

This example shows how to call Simulink® Real-Time™ functions from a Python® script to build a
real-time application from a model, load and run the application, tune parameter values, and capture
signal data.

Set Up MATLAB Session for Python
To set up your MATLAB® session for this example:

1. Open MATLAB and install the MATLAB engine for Python. For more information, see “Call
MATLAB from Python”.

2. Convert the MATLAB session into a shared session. In the Command Window, type
matlab.engine.shareEngine. For more information, see matlab.engine.shareEngine.

Set Up Files and Run Python Script
To set up files and run the Python script:

1. Copy model matlbaroot/toolbox/slrealtime/examples/slrt_ex pendulum 100Hz.slx
to a working folder.

2. Copy Python script CallingSlrealtimeFromPython.py to the same working folder.

3. Open an operating system Command Prompt window and make the working folder the current
folder for this window.

4. To run the Python script, at the command prompt, type:
py CallingSlrealtimeFromPython.py -m [.slx file path] -t [target name]

5. The Python script builds the model, runs the real-time application, and generates a plot of the
captured signal data for cart position.

Run Real-Time Application by Using Python Script

Cart Position

T T T
0.0 2.5 5.0 1.5 10.0 12.5 15.0 17.5 20.0
Time(s)

Line-by-Line Description of Python Script

The Python script uses the Simulink Real-Time function API to run the real-time application and
capture the signal data.

Observe these points in the script:

* To call MATLAB commands from Python, import the matlab.engine module.

import matlab.engine

* Class modelManagement handles open and load of the Simulink model, then it builds the model.
class modelManagement():

* Class targetManagement is responsible for handling interactions with the slrealtime.Target
object in MATLAB. For example, this class loads the application, starts the application, stops the
application, gets and sets parameter values, and captures signal data.

class targetManagement():

* In the main function, the function tries to find all the active, shared MATLAB sessions and
connects to the first one. If there is no session, the function opens a new MATLAB session.

engs = matlab.engine.find matlab()
if not engs:

16-113

16 simulink Real-Time Examples

16-114

eng = matlab.engine.start matlab()
else:
eng = matlab.engine.connect matlab(engs[0])

* In the main function, the function instantiates a modelManagement object and builds the model.

mm = modelManagement(eng, modelFilePath)
appPath = mm.buildModel()

* In the main function, the function instantiates a targetManagement object for the given target
name.

tg = targetManagement(eng, targetName)
* In the main function, the function loads the application on the target computer.
tg.load(appPath)

* In the main function, the function creates a slrealtime.Instrument object in MATLAB, adds a
signal for cart position to the instrument object, adds this instrument object to the target object,
and enables the BufferData mode. The live-streamed signal is saved in memory and waits for
retrieval. For more information about buffered data mode, see getBufferedData.

blockPaths = ['slrt ex pendulum 100Hz/Pendulum']
portNumbers = [1]
tg.captureSignals(appPath, blockPaths, portNumbers)

* In the main function, the function starts to run the application on the target computer.
tg.start()

* In the main function, the function waits for 5 seconds, then sets the Wave Control block parameter
Va'lue to 2. This setting causes the cart to move in a sinusoidal pattern. The value is read again to
make sure that the parameter value has been successfully updated.

tg.setparam('slrt_ex pendulum 100Hz/Wave Control', 'Value',?2)

newValue = tg.getparam('slrt _ex pendulum 100Hz/Wave Control', 'Value')
assert newValue == 2

* In the main function, the function waits for 15 seconds and stops the application.

time.sleep(15)
tg.stop()

* In the main function, the function retrieves the signal data and transfers the data back to Python.
[t, data] = tg.getCapturedSignals('slrt ex pendulum 100Hz/Pendulum',b1)

* In the main function, the function removes the previously added instrument object from the target
object, leaving the target object in a clean state.

tg.removeInstrument ()

* In the main function, the function plots the captured signal data against the time. In the resulting
plot, you can see that the cart position is stabilized at 5 around 5 seconds, and then the cart starts
to move in a sinusoidal pattern as expected after 5 seconds.

plt.plot(t, data)
plt.xlabel('Time(s)")

Run Real-Time Application by Using Python Script

plt.ylabel('Cart Position')
plt.show()

16-115

16 simulink Real-Time Examples

Control Color of Lamp on Instrument Panel

This example shows how to control the color of a lamp indicator on an instrument panel that connects
to a Simulink Real-Time application.

The example operations are:

* Create uifigure, add lamps, and add labels
* Open model and build real-time application
* Connect lamps and add instrument

* Observe color cycle of lamps

* Remove instrument

* Close model

Create uifigure and Add Components

f = uifigure;

lampl = uilamp(f);

lampl.Position = [10 300 20 20];
tlabell = uilabel(f);
tlabell.Position = [40 298 100 22];
tlabell.Text = 'Lamp 1';

lamp2 = uilamp(f);

lamp2.Position = [10 200 20 20];
tlabel2 = uilabel(f);
tlabel2.Position = [40 198 100 22];
tlabel2.Text = 'Lamp 2';

16-116

Control Color of Lamp on Instrument Panel

Pt

W Lamp1

o

W Lamp2

Build Real-Time Application
open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime', 'examples', 'slrt ex lamp instrument'));
model = 'slrt ex lamp instrument';

set param('slrt ex lamp instrument','FixedStep','.01");

evalc('slbuild(model)');

Run Real-Time Application

tg = slrealtime;

load(tg,model);

start(tg);

Wait for Application Start on Target Computer

pause(2);

Add Instruments to Ul Figure

inst = slrealtime.Instrument;

inst.connectScalar(lampl, 'lampl', 'Property', 'Color', 'Callback', @setLampColor);

inst.connectScalar(lamp2, 'lamp2', 'Property', 'Color');
addInstrument(tg,inst);

16-117

16 simulink Real-Time Examples

Lamp 1

) Lamp 2

[
-

Wait and Observe Lamp Color Changes

pause(10);

16-118

Control Color of Lamp on Instrument Panel

) Lamp 1

O Lamp 2

Stop Real-Time Application
stop(tg);

Remove Instruments
removeInstrument(tg,inst);
Close All Windows
bdclose('all');

Callback for changing Lamp Color

function color = setLampColor(~,d)
switch uint8(d(end))

case 5

color = 'green';
case 4

color = 'yellow';
case 3

color = 'cyan';
case 2

color = 'magenta';
case 1

color = 'red';
otherwise

color = 'white';

16-119

16 simulink Real-Time Examples

end
end

16-120

Configure Input and Output Ports for Bit Packing and Unpacking

Configure Input and Output Ports for Bit Packing and
Unpacking

This example shows how to configure Bit Packing blocks and Bit Unpacking blocks.
Open Model

The model uses Bit Packing, Bit Unpacking, and Display blocks to show how to use the input and
output port configuration syntax. Open the model and double-click blocks to view the configuration.

model = 'slrt ex bit pack unpack';
open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples',model));

1 » 0 —
1 > 1 —
5 P 16:18 "
> 0
> 1 >
P 16:18
b

¥

:
1L

16:18

¥

324

A4
P
S
A4

? I Copyright 2021 The MathWorks, Inc.

16-121

16 simulink Real-Time Examples

Settings for Bit Packing and Bit Unpacking Blocks

To demonstrate the syntax for configuring block input and output ports, the model
slrt_ex bit pack unpack has a set of Bit Packing blocks and Bit Unpacking blocks that use these
settings:

slrt_ex_bit_pack unpack/Bit Packing

* Bit patterns: {[0]}

* Output port (packed) data type: uint32
* Outpupt port (packed) dimensions: [1]
slrt_ex_bit_pack unpack/Bit Packing1

* Bit patterns: {[1]}

* Output port (packed) data type: uint32
* Outpupt port (packed) dimensions: [1]
slrt_ex_bit_pack_unpack/Bit Packing2

* Bit patterns: {[16:18]}
* Output port (packed) data type: uint32
* Outpupt port (packed) dimensions: [1]

slrt_ex_bit_pack_unpack/Bit Packing3

* Bit patterns: {0, 1, [16:18]}
* Output port (packed) data type: uint32
* Outpupt port (packed) dimensions: [1]

slrt_ex_bit_pack_unpack/Bit Packing4

* Bit patterns: {[32:34]}
* Output port (packed) data type: uint32
* Outpupt port (packed) dimensions: [2]

slrt_ex_bit_pack unpack/Bit Unpacking

* Bit patterns: {0, 1, [16:18]}

* Input port (packed) data type: uint32

* Inpupt port (packed) dimensions: [1]

* Ouptut port (unpacked) data types (cell array): {'uint8"', 'uintl6', 'uint32'}
* Output port (unpacked) dimensions (cell array): {1,1,1}

* Sign extended: 'On'

slrt_ex_bit_pack_unpack/Bit Unackingl

* Bit patterns: {[32:34]}
» Input port (packed) data type: uint32

16-122

Configure Input and Output Ports for Bit Packing and Unpacking

* Inpupt port (packed) dimensions: [2]

* Ouptut port (unpacked) data types (cell array): {'uint8'}

* Output port (unpacked) dimensions (cell array): {1}

* Sign extended: 'On'

Build Model and Run Real-Time Application

To show the unpacked output in the Display blocks, build the model and run the real-time application.
evalc('slbuild(model)"');

tg = slrealtime;

load(tg,model);

start(tg);

pause(10);
stop(tg);

Close Model
bdclose('all');

16-123

16 simulink Real-Time Examples

Run Real-Time Simulation of Permanent Magnet Synchronous
Motor

16-124

This example shows how to run a real-time simulation of a permanent magnet synchronous motor
(PMSM) that is externally controlled at high switching frequency. The real-time application runs on a
Speedgoat® target computer that has an 10334 I/O module installed. To open the models in this
example and build the real-time application requires these products:

+ MATLAB®

¢ Simulink®

* Simulink Coder™

* Simulink Real-Time™

* Simulink Real-Time Target Support Package

* Speedgoat I/O Blockset

* Speedgoat HDL Coder™ Integration Package

* Speedgoat 10334-325K I/O module with 10334-21 plugin

HDL Coder is required for design customizations.

You can use the Simulink Real-Time model and its corresponding bitstream file to simulate a
permanent magnet synchronous motor system that is externally controlled in closed-loop at high
switching frequency (100kHz) with sufficiently small time step (50 nanoseconds).

Simulink Model for Permanent Magnet Synchronous Motor System

The permanent Magnet synchronous motor system model is a physical system in Simulink. The
system consists of three components, an inverter block, a permanent magnet synchronous motor
block, and an incremental encoder block. The HDL-compatible Simulink implementation of the
subcycle-averaging inverter block reads the PWM duty-cycle from "Gates" inport and DC voltage
input from "V plus" and "V _minus", and outputs the line voltages from outport "VIl abc". You can set
its fault flag from Fault Word port.

The permanent magnet synchronous motor block is an HDL Coder compatible implementation of a
three-phase exterior permanent magnet synchronous motor (PMSM) with sinusoidal back
electromotive force. It takes the input line voltage from the subcycle-averaging inverter block and
outputs shaft angular velocity, shaft angular position, three phase currents, and motor torque. This
block can also take an external speed or torque as input.

The Simulink implementation of quadrature encoder converts the angular position of the motor shaft
to digital pulses. To see more details, open the model:

model = 'slrt ex pmsm';
open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime’, 'examples',model));

Run Real-Time Simulation of Permanent Magnet Synchronous Motor

»[TTLs1
PCle wMator —————————— ("1
»{r_s x prr—
w
»|TTL 53 PCle_thMoter f———————— ("3
» RS s - T 2
1 — = theta
m _m | TTL_5¢
= PCla_trgMotor f———————————————
e &
»|TTL_S5 4
PCle | DO f—— =]
»|TTL 56
Ie

PCla_la ()
Vdel2 »{PCie v plus =
FCla_lb S
Vol »{PCle__minus m (:
>
@ #{PCle_trgispd_external PCle_lc = @

SpdTrq Input
1 #|FCle_troispd_Flag TIL_DAC_trigger ———————»—]
a

| PCle_Fault_Word

Null DAC_trigger ———————— =

[iits_FPGA_clk] DUT_frequency

DUT_frequ 1 DAC_reset »{PCle_DAC_reset

- DAC_la f————#
100000 SiganlFrequency
Motor_Config #{PCle_Motor_Config
Sig_fraqu DAG_lb [————]

PMSM configuration

_,—> PCle_Encoder_Canfig
Encoder_Config S
gain #|PCle_labe_gain =
N
bias »{PCle_labe_bias TTL_Enc_A

3 > ——— PCla_PWM_DutyCycle TIL Enc B > D

MadWave W _m
PCle_PWM_Period I Enc 2 .

]
f_base/PVim_f N .
Im [

>
’—l PCle_PWM_Enable
= TTL_Enc_Count >
=] _Ene_
1 > ——— PCle RC or TTL
Im [

Motor and Inverter HOL Wrapper

RTorTTL »| ——— Model sirt_ex_pmsm

m m Simulink Real-Time example model

Capyright 1090-2021 The MathWWarks, Inc.

set param(model, 'SimulationCommand', 'Update');

load system('slrt ex pmsm')
open_system('slrt ex pmsm/Motor and Inverter HDL Wrapper/Motor and Inverter Mathmatical Models')

16-125

16 simulink Real-Time Examples

.—P Gates
Gates Vil_abc +——»(5)
I_abc
| lout
¥ Voltage PhaseCur —
V_plus SCA Inverter Vph_sbec ———#—
V_plus SpdiTrg RotorSpd —————»(1)
spitrg_sxternal wivlotor
. Parmanent Magnet
G Or——*{vminus Synchronous Motar
W_minus
|_bc . ®—> InputMode R gh > 2)
torque_in_fl thMotar
Fault Word 1pc foraueinteg
Fault_Word
Config Torgue DD
Configurations trq_elec_Mator

A— ()
Enc_A

oD
Enc_B
Quadrature Encoder

()

Enc_Z

G

Encoder_Canfig

| Config

¥

Count 4’@

Enc_Count

This model verifies the three-phase output currents and encoder's digital signals resulting from the
input torque signal. To see how the model works, simulate the model.

sim(model);
Real-Time Simulation

This example also provides the corresponding Simulink Real-Time interface model and the bitstream
generated by using the HDL Workflow Advisor, which you can download to a Speedgoat FPGA I/O
334-21 target.

model gm = 'slrt ex pmsm gm';
open_system(fullfile(matlabroot, 'toolbox','slrealtime’', 'examples',model gm));

16-126

Run Real-Time Simulation of Permanent Magnet Synchronous Motor

Generated by HOL Workflow Advisor on 11-Jan-2022 11:11:22

Simulink Real-Time example model

Copyright 1999-2021 The Math\Warks, Inc.

»{TTL 51
T
i se PCle_whioler [——
w
[m] »|TTL_53 FCla_tiMotor f—————————————— ("5)
[156) =N hhdotor —
U > TTL 54
#TTL POCle_troMotor f———————————— ("3
| TTL_S5 4
FCle_|_DC pb———
> TTL_S6
Fele la [» 1)
Vidci2] | PCla_V_plus ° la
PCla_lb »(5
Wdo!: | PCla__minus Ib ?
25 W PCle_irgispd_external PCle_le = g €D
c
1 | FCla_irgispd_Flag TTL_DAC_tiigger ———————»=
299
0 W PCle_Fault_Word
; _Faul | e f—————
f11s_FPEA_ci DUT frequency Null_DAC_trigges 3
DUT frequ . DAG_reset #| PCle_DAC_reset
DAC la f——]
100000 T
Mator_Canfig | PCla_Motor_Config
Sig_fraqu R
PMSM configuration) DAC_Ib =
,—b PCla_Encoder_Config
Encoder_Canfig DAC_Is =
gain | FCla_lzbe_gain
blas B PCle_labc_bias TTL Enc A »
O
* » —— »{FCla_PWWM_DulyCydle TTL_Enc B »
M [
= ,—r PCle_PWM_Period TTL B 7 »
f_base/PYWh_t 2 + » ——
PCle_PWM_Enable
|] T Ene Count N
] | O PCla RG or TTL
% W
o m Motor and Inverter HDL Wrapper
[Model sirt_ex_pmsm
o o
I [

1. Reconfigure the parameters for PMSM system to your values from the PMSM configuration block
mask.

2. Make sure that the development computer has a connection to the target computer.

3. Make sure that the bitstream file is in your working folder, build the model, and download the real-
time application to the target computer. On the Real-Time tab, click Run on Target. Or, use the
slbuild command and the load command.

4. Run the real-time application by using the Run on Target button.

5. Open the Simulation Data Inspector by double-clicking the Simulation Data Inspector icon or by
using the Simulink.sdi.view command.

16-127

16 simulink Real-Time Examples

‘ Simulation Data Inspector - untitled*
Inspect Compare

Filter Signals

+ NAME LINE

 Run 1: gm_slrt_ex_PMSM @ tp69a18500_f86f

- - (b gm_sirt_ex_PMSM
v Motor and Inverter HDL Wrapper: —

Motor and Inverter HDL Wrapper. —

v
E Motor and Inverter HDL Wrapper:7 =

Archive

@O & MM [«

Properties

0.05

0.04

0.02

0.01

-0.01

-0.04

-0.05

CHHEARNE:SE = &

W Motor and Inverter HDL Wrapper:5 M Motor and Inverter HDL Wrapper:6 Motor and Inverter HDL Wrapper: 7
6

More Information

The FPGA bitstream file MotorAndInverterHDLWrapper.mcs is available in the Simulink Real-

Time examples folder.

cd(fullfile(matlabroot, 'toolbox', 'slrealtime', 'examples'))

For the Motor Control Blockset version of this example that demonstrates hardware-in-the-loop (HIL)
simulation of PMSM, see “Field-Oriented Control (FOC) of PMSM Using Hardware-In-The-Loop (HIL)
Simulation” (Motor Control Blockset).

Close All Open Files
bdclose all;

16-128

Apply Persistent Variables in Real-Time Applications

Apply Persistent Variables in Real-Time Applications

This example shows how to apply persistent variables in real-time applications.

In a model, you save variables on target computer whose values persist when the real-time
application stops and even when the target computer is shut down by using Persistent Variable
Write blocks. At real-time application start, you direct the real-time application to read these
persistent variables by using Persistent Variable Read blocks.

In MATLAB®, you can get or set the values of persistent variables on the target computer by using
the getPersistentVariables function and the setPersistentVariables function.

Examine Persistent Variables in the Model

The model slrt_ex persist computes the final position by using information from the speed input
and initial position input. The Persistent Variable Read block variable position provides the
initial value for the first run of the application from variable default value when the variable
position does not exist on target computer. When the application stops, the Persistent Variable
Write block variable position stores the final position from the run. The real-time application uses
this value as the initial position for the next run.

To open the model and examine the Persistent Variable block values, in the Command Window, type:

model = 'slrt ex persist’';
open_system(fullfile(matlabroot, 'toolbox', 'slrealtime’, "examples',model));

10 L
KTs
o - (1)
=] z-
. > Estimated Position
Discretes
Integrator
Pearsistent Variable Persistant Variable
P
Read Data »|Data Write
position position

Initial Position

hodel sirt_ex_persist

Simulink Real-Time example model

Copyright 2021 The MathWorks, Inc.

Build and Load the Real-Time Application

To build and load the real-time application, in the Command Window, type:

tg = slrealtime;
connect(tg);
evalc('slbuild(model)"');
load(tg,model);

16-129

16 simulink Real-Time Examples

Initial Value of Persistent Variable

The initial value of the persistent variable position when it does not exist on target computer is 0.
The value is set by the Default value parameter of the Persistent Variable Read block.

Observe How Persistent Variable Changes in First Run

To run the real-time application, in the Command Window, type:

start(tg);

Check the value of the persistent variable after the stop time expires and the real-time application
stops.

pause(5);
myPersistVars

getPersistentVariables(tg)

myPersistVars
struct with fields:

position: 20

Observe How Persistent Variable Changes in Second Run

To run the real-time application, in the Command Window, type:

load(tg,model);
start(tg);

Check the value of the persistent variable after the stop time expires and the real-time application
stops.

pause(5);
myPersistVars = getPersistentVariables(tg)
myPersistVars =

struct with fields:

position: 40

Clear the Persistent Variable Values

Because the persistent variable values remain on the target computer after the real-time application
stops, you must clear the retained values if the retained values are not needed. These steps show a
way to clear the position persistent variable values.

myNewPersistVars = rmfield(myPersistVars, 'position');
setPersistentVariables(tg,myNewPersistVars);
myPersistVars = getPersistentVariables(tg)

myPersistVars =

16-130

Apply Persistent Variables in Real-Time Applications

[]

You can also remove all persistent variable values by using this command.
setPersistentVariables(tg, [1);

Preserve Persistent Variable Data by Safe Shutdown of Target Computer

The previous steps demonstrate how Persistent Variable values are stored when the real-time
application stops and are reloaded when the real-time application starts. These variables are also
retained when the target computer is shut down.

Target computers can handle being shut down by turning off power to the computer, but using this
approach is not the best practice for the target computer. Also, if you just turn off the target
computer while the real-time application is running, you can lose the last few seconds of data for the
Persistent Variables.

To preserve all persistent variable data and safely shut down the target computer:

1. On the target computer, stop the real-time application (for example, stop(tg)). The values for
persistent variables are stored.

2. Open a system terminal window.

3. On the development computer, for user slrt and target computer IP address 192.168.7.5, type
command: ssh s1rt@192.168.7.5

4, Complete the login with password: slrt

5. At the target computer system prompt that appears in the terminal window, shut down the target
computer by using QNX Neutrino command: shutdown -S system

6. After the shutdown command runs, you can safely turn off power to the target computer.

For more shutdown command info, see shutdown in the QNX Neutrino documentation.
Close All Files
bdclose('all');

16-131

https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.utilities/topic/s/shutdown.html

16 simulink Real-Time Examples

Communicate with Data Distribution Service (DDS) Middleware

This example shows how to operate communications using Data Distribution Service (DDS)
middleware on the target computer. The Simulink® Real-Time™ DDS Send block and DDS Receive
block pass messages using the dds middleware on the real-time application.

To establish communication by using data distribution service:

Open a Simulink model.
In the Simulink editor, on the Apps tab, select Apps > Simulink Real-Time.
Add SLRT DDS blocks to the model.

Configure the SLRT DDS blocks by either adding a new data dictionary or associating an existing
dictionary. For more information about the data dictionary, see DDS Dictionary (DDS Blockset).

Build the model and generate the real-time application.
Connect to the DDS application and run the real-time application on the target computer.

Note: If the RegisteredType name des not match the TopicType name, the real-time application
cannot communicate with the DDS application.

Using this example build the slrt ex pendulum 100Hz dds model, and deploy the application on
a target computer. Start running the application, and observe the data from DDS Send block is
received by the DDS Receive block by using the Simulink Data Inspector.

Open Example Model

Open the model. In the Command Window, type

open_system('slrt ex pendulum 100Hz dds');

e
DOS Msg E
oos
Bus Messaga Sendl

" Craatort e —
DS Eandi
<ampbluste =

16-132

Model sirt_ex_pendulum_100Hz_dds
Simulink Real-Time example model

Copyright 2022 The MathWorks, Inc.

Communicate with Data Distribution Service (DDS) Middleware

0.12 {

0.08 4

0.05 4

0.03 4

-0.03 4

-0.05 4

0.00

-0.12 4

Build Model and Download to Target Computer

To build the model and download the real-time application, type:

tg=slrealtime('TargetPCl"');
evalc('slbuild(''slrt_ex pendulum 100Hz dds'')');
load(tg, 'slrt _ex pendulum 100Hz dds');

start(tg);

View Signals From DDS Send and DDS Receive Blocks

To view the signals, open the Simulation Data Inspector. In the Command Window, type:

Simulink.sdi.view();

Pendulum m Amplitude

Time Plot

5 10 15 20 25 30 35 40 45 50 55 a0 a5 70

Close the App and Models

Close the Simulation Data Inspector. In the Command Window, type:
Simulink.sdi.close;

Close the open models. In the Command Window, type:

bdclose ('all');

See Also
DDS Dictionary (DDS Blockset)

16-133

16 simulink Real-Time Examples

Related Examples
. “Import or Create DDS Definitions” (DDS Blockset)
. “Edit Domains, Topics, and Registered Types” (DDS Blockset)

16-134

Troubleshooting

Solutions have been worked out for some common errors and problems that can occur when you are
using Simulink Real-Time software. For more information, see “Find Simulink Real-Time Support” on
page 17-36.

“Troubleshooting Basics” on page 17-2

“Troubleshoot Missing Real-Time Tab” on page 17-4

“Troubleshoot Communication Failure Through Firewall (Windows)” on page 17-5
“Troubleshoot Cannot Load Shared Object on Target Computer” on page 17-14

“Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and Multidimensional
Signals” on page 17-16

“Troubleshoot Signal Data Logging from Inport in Referenced Model” on page 17-18

“Troubleshoot Signal Data Logging from Inport in Referenced Model in Test Harness”
on page 17-20

“Troubleshoot Signal Data Logging from Send and Receive Blocks” on page 17-22
“Troubleshoot Signals for Streaming or File Logging” on page 17-23

“Troubleshoot Folder Names with Spaces or Special Characters Halt Model Builds”
on page 17-24

“Troubleshoot Model Links to Static Libraries or Shared Objects” on page 17-25
“Troubleshoot Build Error for Accelerator Mode” on page 17-27

“Troubleshoot Long Build Times for Real-Time Application” on page 17-28
“Troubleshoot Working with Persistent Variables” on page 17-30

“Troubleshoot Unsatisfactory Real-Time Performance” on page 17-31

“Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-33
“Troubleshoot Gaps in Streamed Data” on page 17-35

“Find Simulink Real-Time Support” on page 17-36

“Install Simulink Real-Time Software Updates” on page 17-37

17 Troubleshooting

Troubleshooting Basics

17-2

For questions or issues about your installation of the Simulink Real-Time product, refer to these
guidelines and tips.

For more specific troubleshooting solutions, go to the MathWorks® Support website MathWorks Help
Center website. The troubleshooting suggestions address these areas:

Troubleshooting System Configuration

* “Troubleshoot Communication Failure Through Firewall (Windows)” on page 17-5

* “Troubleshoot Cannot Load Shared Object on Target Computer” on page 17-14

* “Troubleshoot Vector CANape Operation” on page 4-13

* “Troubleshoot ETAS Inca Operation” on page 4-17“Troubleshoot System Upgrade for R2020b”
Troubleshooting Model Preparation

* “Troubleshoot Missing Real-Time Tab” on page 17-4

* “Troubleshoot Folder Names with Spaces or Special Characters Halt Model Builds” on page
17-24

* “Troubleshoot Model Links to Static Libraries or Shared Objects” on page 17-25
* “Troubleshoot Build Error for Accelerator Mode” on page 17-27

* “Troubleshoot Long Build Times for Real-Time Application” on page 17-28

* “Troubleshoot Working with Persistent Variables” on page 17-30

* “Troubleshoot Model Upgrade for R2020b”

* “Troubleshoot S-Function Build Upgrade for R2020b”

Troubleshooting Control and Instrumentation

* “Troubleshoot Parameters Not Accessible by Name” on page 7-75
* “Troubleshoot Signals Not Accessible by Name” on page 7-73

* “Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and Multidimensional
Signals” on page 17-16

* “Troubleshoot Signal Data Logging from Inport in Referenced Model” on page 17-18

* “Troubleshoot Signal Data Logging from Inport in Referenced Model in Test Harness” on page
17-20

* “Troubleshoot Signal Data Logging from Send and Receive Blocks” on page 17-22
+ “Troubleshoot Signals for Streaming or File Logging” on page 17-23
Troubleshooting Performance Optimization

* “Troubleshoot Unsatisfactory Real-Time Performance” on page 17-31

* “Troubleshoot Overloaded CPU from Executing Real-Time Application” on page 17-33
* “Troubleshoot Gaps in Streamed Data” on page 17-35

* “Troubleshoot System Upgrade for R2020b”

* “Troubleshoot Model Upgrade for R2020b”

* “Troubleshoot MATLAB API Call Upgrade for R2020b”

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Troubleshooting Basics

* More Troubleshooting: Simulink Real-Time Support

* “Find Simulink Real-Time Support” on page 17-36
* “Install Simulink Real-Time Software Updates” on page 17-37

17-3

17 Troubleshooting

Troubleshoot Missing Real-Time Tab

17-4

Where is the Real-Time tab? I do not see this tab in the Simulink editor.

What This Issue Means

From the model configuration, the Simulink editor determines which tabs to display. The editor
displays the Real-Time tab for models that are configured for Simulink Real-Time.

Try This Workaround

To configure your model for Simulink Real-Time, in Simulink Editor, from the Apps tab, click
Simulink Real-Time.

This operation changes the code generation target to slrealtime. t1c for the model. After
changing the configuration, the Simulink editor displays the Real-Time tab for the model.

See Also

More About

. “Create and Run Real-Time Application from Simulink Model”

Troubleshoot Communication Failure Through Firewall (Windows)

Troubleshoot Communication Failure Through Firewall
(Windows)

When I attempt to connect to the target computer by using Simulink Real-Time Explorer, I see this
error message.

Error: Cannot connect to target 'TargetPCl': Cannot connect to target.

4\ Simulink Real-Time Explorer — Oa *

Error

o Cannot connect to target 'TargetPC1": Cannot connect to

target.

Even though the connection fails, clicking on the Update button or Reboot button in Simulink Real-
Time Explorer works. These operations indicate that the target computer can be reached through the
Ethernet port.

What This Issue Means

In R2020b and later releases, Simulink Real-Time uses a protocol for the development-to-target
computer connection that is blocked by default in Window Defender Firewall for networks classified
as Public. Windows also classifies all Ethernet connections as Public by default.

If you do not select the correct options when first running MATLAB, it is can be possible to ping,
update, and reboot the target computer from MATLAB. But, these incorrect option selections prevent

17-5

17 Troubleshooting

17-6

communication connection to the target computer. This communication connection is necessary to
load and run real-time applications on the target computer.

Try These Workarounds

Resolve this issue by allowing MATLAB to communicate on all types of networks. Apply this setting
when prompted on first connection or apply this setting later through the Windows Defender Firewall
Allow an app through Windows Firewall selection. If that is not possible due to privilege
restrictions, the issue can also be resolved by changing the classification of the Ethernet interface
used for development-to-target computer connection from Public to Private.

Note If you develop a compiled application as described in “Create Standalone Instrument Panel App
by Using Application Compiler” on page 14-14, apply these workarounds to let the compiled
application communicate with the target computer through the firewall.

Allow MATLAB for Public and Private Networks by Using Prompt

When you first try to connect to a target computer, Windows Defender Firewall prompts you to allow
MATLAB to communicate on Private and Public networks. Make sure that both Private and Public
options are selected. Only one is selected by default.

Troubleshoot Communication Failure Through Firewall (Windows)

ﬂ Windows Security Alert X

@ Windows Defender Firewall has blocked some features of this
app

Windows Defender Firewall has blocked some features of MATLAE R.202 1b on all public and
private networks.

‘ Name: MATLAB R2021b
Publisher: The MathWorks Inc.
Path: C:\program files\matlaby 202 1bbin\win64\matab.exe

Allow MATLAB R2021b to communicate on these networks:
%Pawabenemmrsuﬁasmwhmorwm‘knemrk

[;ﬂ Public networks, such as those in airports and coffee shops (not recommended
because these networks often have little or no security)

What are the risks of allowing an app through a firewall?

. G,&lowac:esas Cancel

Click Allow access.
Manually Allow MATLAB for Public and Private Networks

From the Windows Start menu, search Allow an app through Windows Firewall.

17-7

17 Troubleshooting

All Apps Documents Web More ¥ &

Best match

— Allow an app through Windows Firewall

Control panel

e :
L R L = Open
T A AT S
W Bt o R G Gl R
TR Y R T a
Wy R L
=] Y e e L
rwe e
JE N oy e o] ey e B 5
e T

AL Allow an app through Windows Firewalll

Click the Allow an app through Windows Firewall option.
Scroll down in the Allowed apps and features list and find the MATLAB release that you are using.

If both Private and Public check boxes are selected, see “Configure Development-to-Target
Computer Ethernet Interface as Private” on page 17-10.

17-8

Troubleshoot Communication Failure Through Firewall (Windows)

‘ Allowed apps — | X

1T ﬂ « Windows Defender Firewall *> Allowed apps v (@] R

Allow apps to communicate through Windows Defender Firewall

To add, change, or remove allowed apps and ports, click Change settings.

What are the risks of allowing an app to communicate? !;Chauge settings

Allowed apps and features:

Name Private Public »
MATLAB R2021b O
L
Details... Remove

Allow another app...

014 Cancel

Click the Change settings button and confirm the security dialog. Make sure that the Private and
Public boxes are selected. A Domain option or others may be available, but these options are not
relevant for the MATLAB network access configuration.

17-9

17 Troubleshooting

1T ﬂ « Windows Defender Firewall *» Allowed apps v (@] R

Allow apps to communicate through Windows Defender Firewall

To add, change, or remove allowed apps and ports, click Change settings.

What are the risks of allowing an app to communicate? !;Chaﬂge settings

Allowed apps and features:

Name Private Public »
MATLAB R2021b

‘ | -]
] | | -
- .] _] - |]
‘ _ I. - |
o e R |] ol
‘ | L]]
u . | | |]
- .]] |]
‘ _ - |
o n = = |] ol
‘ | L] ™ _ -] hd
Details... Remove

Allow another app...

0]4 Cancel

Configure Development-to-Target Computer Ethernet Interface as Private

You can use the Windows UI or PowerShell command window to configure development-to-target
computer Ethernet interface as private.

Windows UI Method

The Windows UI method is straightforward, but may not be available depending on your system
configuration. If not, use the PowerShell Command Window Method.

1 Right-click on the Wi-Fi or Ethernet network icon in the lower right corner of the Windows
taskbar (next to the clock).
Select Open Network & Internet settings.
Under the Ethernet section, click Properties.

4 Select the radio button for Private.

PowerShell Command Window Method

17-10

Troubleshoot Communication Failure Through Firewall (Windows)

Right-click on the Windows Start menu and click the Windows PowerShell (Admin) selection.
Run the command Get-NetConnectionProfile.

Find the name of the Ethernet interface that you are using for development-to-target computer
communication.

Enter the command Set-NetConnectionProfile.
Use the interface name that you find as the Name argument.
Confirm the changes by running Get-NetConnectionProfile.

For example, if the interface is named Unidentified network, enter the command:

Set-NetConnectionProfile -Name "Unidentified network" -NetworkCategory "Private"

17-11

17 Troubleshooting

EN Administrator: Windows PowerShell — O X

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreb

PS C:\Windows\system32> Get-NetConnectionProfile

Name : Unidentified network
InterfacelAlias : Ethernet
Interfacelndex : 15

NetworkCategory : Public
IPvAConnectivity : MNoTraffic
IPv6Connectivity : MNoTraffic

PS C:\Windows\system32> Set-NetConnectionProfile
PS C:\Windows\system32> Get-NetConnectionProfile

MName : Unidentified network
InterfacelAlias : Ethernet
Interfacelndex : 15

NetworkCategory : Private
IPvdConnectivity : MNoTraffic
IPv6Connectivity : MNoTraffic

PS C:\Windows\system32>

Confirm Successful Configuration

To confirm successful configuration, in Simulink Real-Time Explorer or in the Simulink Editor on the
Real-Time tab, click the Disconnected button. Confirm that the button label changes to Connected.

If the label does not change to Connected, the connection problem persists. Contact a systems

administrator for further assistance. Administrator credentials may be required to configure the
Windows Defender Firewall, or there may be another firewall on the development computer that

17-12

Troubleshoot Communication Failure Through Firewall (Windows)

requires configuration. A systems administrator may need to allow communications on specific ports
or add more specific firewall rules.

See Also

More About

. “Enable Development Computer Communication (Windows)”

External Websites
. MathWorks Help Center website

. What ports and protocols does a Speedgoat target use to communicate with the host in Simulink
Real-Time?

. How do I configure Windows Defender Firewall for MATLAB to communicate with external
hardware such as Speedgoat?

17-13

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.mathworks.com/matlabcentral/answers/678393-what-ports-and-protocols-does-a-speedgoat-target-use-to-communicate-with-the-host-in-simulink-real-t
https://www.mathworks.com/matlabcentral/answers/678393-what-ports-and-protocols-does-a-speedgoat-target-use-to-communicate-with-the-host-in-simulink-real-t
https://www.mathworks.com/matlabcentral/answers/396086-how-do-i-configure-windows-defender-firewall-for-matlab-to-communicate-with-external-hardware-such-a
https://www.mathworks.com/matlabcentral/answers/396086-how-do-i-configure-windows-defender-firewall-for-matlab-to-communicate-with-external-hardware-such-a

17 Troubleshooting

Troubleshoot Cannot Load Shared Object on Target Computer

17-14

When I load and run on the target computer a real-time application that depends on a shared object
(.s0), the real-time application cannot run and load the library. In the system log, I see a message
like this error:

1dd:FATAL: Could not load library xyz.so

What This Issue Means

An error loading a shared object can indicate some issue with missing or corrupt library
dependencies on the target computer. The issue could be:

» The download to the target computer has modified or has removed some required files on the
target computer.

* The download to the target computer put the library in a location that is not accessible when the
real-time application runs.

Try This Workaround
These workarounds explore the possible issues.
Check for Issues with Required Files

To check for this issue, connect to the target computer, and then try to build, load, and run example
model slrt ex osc. If working with the default target computer, in the MATLAB Command Window,
type:

tg = slrealtime;

connect(tg);
open_system(fullfile(matlabroot, 'toolbox"', 'slrealtime', 'examples', 'slrt ex osc'));
slbuild('slrt _ex osc');

load('slrt_ex osc');

start('slrt_ex osc');

If you can successfully connect to the target computer and build, load, and run the real-time
application, there is no issue with files from the Simulink Real-Time Target Support Package on the
target computer.

If you cannot complete those operations successfully, update the target computer software by using
the force option. If working with the default target computer, in the MATLAB Command Window,

type:

update(tg, 'force',true);

After the software update, connect to the target computer and try to build, load, and run the real-time
application..

Check Location of Shared Object on Target Computer

To check for this issue, use SSH or FTP to examine the location of the shared object file on the target
computer. For more information, see “Execute Target Computer RTOS Commands at Target Computer
Command Line” on page 9-3.

Troubleshoot Cannot Load Shared Object on Target Computer

After you build the real-time application that links to a shared object, you must install the real-time
application and the shared object on the target computer. Put the shared objects in a location on the
target computer where they can be found and loaded at run time. The recommended locations are /

lib, /usr/1lib, or /usr/local/1lib. Root access is required to copy or modify files in these
locations.

See Also
update | slrealtime.getSupportInfo

More About

. “Troubleshoot Model Links to Static Libraries or Shared Objects” on page 17-25

. “Execute Target Computer RTOS Commands at Target Computer Command Line” on page 9-3

. “External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models” on
page 11-2

17-15

17 Troubleshooting

Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-
Point, and Multidimensional Signals

My models sometimes use signals in nonvirtual buses, signals with fixed-point data types, and
mutidimensional signals that have a number of dimensions greater than two. I want to view signal
data from these signals in the Simulation Data Inspector. I do not see data for these signals when I
select them in Simulink Real-Time Explorer for streaming to the Simulation Data Inspector.

What This Issue Means

There are some guidelines to data logging signals in nonvirtual buses, signals with fixed-point data
types, and mutidimensional signals that have a number of dimensions greater than two:

* When these signals are marked for logging with the Simulation Data Inspector, the signal data
displays in the Simulation Data Inspector.

* When these signals are connected to File Log blocks, the signal data displays in the Simulation
Data Inspector.

* When these signals are selected for dynamic streaming with an instrument object—either by
selecting the signals in Simulink Real-Time Explorer or adding the signals by using the
Application object API, the signal data does not display in the Simulation Data Inspector or in
App Designer instrument panel applications.

Try This Workaround

There are workarounds to get signals in nonvirtual buses, signals with fixed-point data types, and
mutidimensional signals (that have a number of dimensions greater than two) to display in the
Simulation Data Inspector.

Signals in Nonvirtual Buses

To get signals in nonvirtual buses to display in the Simulation Data Inspector, mark the signals for
data logging in the model or connect the signals to File Log blocks.

To instrument signals in nonvirtual buses to stream to an Instrument object, use the BusElement
argument in the addSignal, connectLine, or connectScalar methods.

Signals with Fixed-Point Data Types

To get signals with fixed-point data types to display in the Simulation Data Inspector, mark the signals
for data logging in the model or connect the signals to File Log blocks.

Multidimensional Signal
To get signals in mutidimensional signals (that have a number of dimensions greater than two) to

display in the Simulation Data Inspector, mark the signals for data logging in the model or connect
the signals to File Log blocks.

See Also
Bus Creator | fixdt | addSignal | connectlLine | connectScalar

17-16

Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and Multidimensional Signals

Related Examples

. “Parameter Tuning and Data Logging” on page 7-19

More About

. “Create Nonvirtual Buses Within a Component”
. “Fixed-Point Data in MATLAB and Simulink”

. “Signal Basics”

. “Variable-Size Signal Basics”

17-17

17 Troubleshooting

Troubleshoot Signal Data Logging from Inport in Referenced

Model

17-18

My model contains referenced models. The referenced models have root-inport signals that would be
helpful to log and stream to the Simulation Data Inspector for visualization. When I mark these
signals in the model for logging, I see this warning in the diagnostic viewer when I build the model:

Warning: Streaming to the SDI is not available for signal at
<sldiag objui="outport" objparam="1" objname="{'A/B',
'B/bl'}">output port 1l</sldiag> of block '{'A/B', 'B/bl'}"'.
Add a SignalCopy block at that port and instrument the
SignalCopy output port.

What This Issue Means

The warning message reports that the root-inport signals of referenced models are not available for
streaming. Within top model A, the referenced model root inports that generate this warning message
appear in referenced model A/B and referenced model A/B/C.

al

Top Model A

Troubleshoot Signal Data Logging from Inport in Referenced Model

b1

[

Referenced Model A/B

D g

ci

L
L

Referenced Model A/B/C

Try This Workaround

To instrument a root-inport signal in a referenced model and stream the signal to the Simulation Data
Inspector, you can connect the signal to a Signal Conversion block that you configure as a Signal
Copy block. Mark the output of the Signal Copy block for logging to the Simulation Data Inspector.

See Also

Related Examples

. “Trace or Log Data with the Simulation Data Inspector” on page 7-22

More About
. “Signal Logging and Streaming Basics” on page 7-27

17-19

17 Troubleshooting

Troubleshoot Signal Data Logging from Inport in Referenced
Model in Test Harness

I created a Simulink Test test harness for my Simulink Real-Time model. The model has a referenced
model that contains an inport whose signal I have marked for data logging in the Simulation Data
Inspector. During testing, I see this error:

Warning: Streaming to the SDI is not available for signal at
<sldiag objui="outport" objparam="1"

objname="{'Example Harnessl/Example', 'Example/Input'}">output
port 1l</sldiag> of block '{'Example Harnessl/Example',
"Example/Input'}'. Add a SignalCopy block at that port and
instrument the SignalCopy output port.

What This Issue Means

It is not possible to stream signal data from the referenced model inport for logging from within the
test harness.

Try This Workaround

Mark the input signals to the model block for logging. This model provides an example workaround.
For more information, see the Simulink Test documentation.

The input signal is logged to
the model block because the
marking the signal for logging
inside the referenced model
causes a warning that the
signal is unavailable.

Exampls

-—Pﬂututﬁ | Input Cutput f——————» < [Quiput_£
Input n= R Cutput < 0utput= [Qutput_

Signal spec. Signal spec.
and routing and routing

17-20

Troubleshoot Signal Data Logging from Inport in Referenced Model in Test Harness

See Also

Related Examples
. “Test Real-Time Application in Simulink Test” on page 15-2

17-21

17 Troubleshooting

Troubleshoot Signal Data Logging from Send and Receive
Blocks

17-22

My model uses Send and Receive blocks. I want to view signal data from the message line (output of
send or input of receive) in the Simulation Data Inspector. I see unexpected data when I select a
message line in Simulink Real-Time Explorer for streaming to the Simulation Data Inspector.

What This Issue Means

There are some guidelines to data logging message line signals:
* Message line signals that are marked for logging with the Simulation Data Inspector display the
data accurately in the Simulation Data Inspector.

* Message line signals that are connected to File Log blocks display the data accurately in the
Simulation Data Inspector.

* Message line signals that are selected for dynamic streaming with an instrument object—either by
selecting the signals in Simulink Real-Time Explorer or adding the signals by using the
Application object API—do not display the data accurately in the Simulation Data Inspector or
in App Designer instrument panel applications.

For more information about message lines, see “Animate and Understand Sending and Receiving
Messages”.

Try This Workaround

To get accurate display of message line signals in the Simulation Data Inspector, mark the signals for
data logging in the model or connect the signals to File Log blocks.

See Also
File Log

Related Examples

. “Animate and Understand Sending and Receiving Messages”

More About
. “Data Logging with Simulation Data Inspector (SDI)” on page 7-15

Troubleshoot Signals for Streaming or File Logging

Troubleshoot Signals for Streaming or File Logging

There are signals selected for streaming or connected to File Log blocks in my model that generate
an error that includes the text:

Unable stream signal signal name.

What This Issue Means

This error message for signals selected for streaming or connected to File Log blocks could indicate
that the signal has one or more of these issues:

* The signal is not available in application.

* The signal does not use globally accessible memory in application.
* The signal connects to a Send/MessageSend block.

* The signal has inherited sample time.

* The signal is discontiguous.

* The signal comes directly from a referenced model

Try These Workarounds
The workarounds for these issues vary. Try these.
Workaround for Signal Not Available

Make sure that these signal types are not being monitored, traced, or logged by name in the real-time
application:

+ Virtual or bus signals (including signals from bus creator blocks and virtual blocks)
* Signals that Simulink optimizes away
* Signals of complex or multiword data types

* Blocks without alphanumeric names

Workaround for Signal Not Global Available or Discontiguous Signal

To resolve, try inserting a Signal Copy block (a Signal Conversion block in Signal Copy mode) into the
signals that you want to stream. Log the copied signal output instead. If you use a Dashboard block,
connect it to the output signal of the Signal Copy block.

Workaround for Signal Connected to Message Block

To resolve, try streaming or file logging the input signal to the Send/MessageSend block. The output
of the block (a message) cannot be streamed or logged.

Workaround for Signal Has Inherited Sample Time
To resolve, change the signal sample time from inherited to a value. Signals with inherited sample

time cannot be streamed or logged.

17-23

17 Troubleshooting

Troubleshoot Folder Names with Spaces or Special Characters
Halt Model Builds

17-24

When a space character appears the file path, my Simulink Real-Time model build reports an error:

Simulink Real-Time model build cannot use a file path with spaces for model build directory.

When a special character, such as an open parenthesis character " (", appears in the file path, my
model build reports an error:

Error(s) encountered while building "xxxx"

What This Issue Means

For the Simulink Real-Time model build .. message or for the Error(s) encountered
while building .. message, message indicates that a space character or special character appears
in the file path. The QNX Neutrino toolchain for the code generation target is not compatible with file
paths that contain spaces or special characters, the model build halts and does not output a real-time
application.

Try This Workaround
Try these workaround options to resolve the model build errors.
Create a Build Folder

Create a folder name that does not have spaces or special characters in it. Build your model in that
folder.

Map the Build Folder

Map the folder name or path that has spaces or special characters in it to a folder name or path
without spaces or special characters. Build your model in the mapped folder.

See Also

More About

. “Build Process Support for File and Folder Names”

Troubleshoot Model Links to Static Libraries or Shared Objects

Troubleshoot Model Links to Static Libraries or Shared Objects

Some model build and runtime issues occur when I link my real-time application to static libraries
(.a) or shared objects (. so0).

What This Issue Means

When building or running real-time a application that links to static link libraries (. a) or shared
object libraries (. s0), there are some considerations that help you use libraries that are compatible
with the QNX Neutrino RTOS on the target computer. These recommendations are helpful when
troubleshooting library usage, including:

* Alink to a library from QNX Neutrino RTOS that is available in the Simulink Real-Time target
support package

* A shared object that is included in the model through an FMU block
* A custom static library or shared object that is linked to the real-time application

Try This Workaround
These workarounds explore the possible issues.
Link to Accessible Libraries or Objects

When you link to a static library or shared object, the library or object must be:

* Compatible with the QNX Neutrino RTOS
* Accessible to the toolchain at build time

Check to ensure that you have followed the guidelines for library compatibility. See “External Code
Integration of Libraries and C/C++ Code with Simulink Real-Time Models” on page 11-2. Check that
the toolchain can access the library at build time. Remember that the QNX Neutrino cannot process
spaces in the path to files.

Install Shared Objects on Target Computer

After you build the real-time application that links to a shared object, install both the real-time
application and the shared object on the target computer. Copy the shared objects to a location on the
target computer where they can be found and loaded at runtime. The recommended locations are /
lib, /usr/1lib, or /usr/local/lib. Root access is required to copy files to these locations.
Rebuild Real-Time Application When Rebuilding Static Libraries

Because linked static libraries are included in the real-time application, when you modify and rebuild

a static library, you rebuild any real-time applications that include that library. After rebuilding the
static library and the real-time application, reinstall the real-time application on the target computer.

See Also
FMU

17-25

17 Troubleshooting

More About

. “Build Support for S-Functions”

. “Compile Source Code for Functional Mock-up Units” on page 3-3

. “External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models” on
page 11-2

. “Troubleshoot Cannot Load Shared Object on Target Computer” on page 17-14

External Websites
. MathWorks Help Center website

17-26

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Troubleshoot Build Error for Accelerator Mode

Troubleshoot Build Error for Accelerator Mode

I get a build error when building a model in accelerator mode or rapid accelerator mode when the
model contains Simulink Real-Time blocks (for example, model blocks that represent hardware).

What This Issue Means

Simulink Real-Time does not support accelerator mode or rapid accelerator mode simulation of
models with blocks that represent hardware. For example, if you open the

slrt_ex serialasciitest model, change the Simulink mode to rapid accelerator, and run the
model, Simulink displays this error:

Unable to build a standalone executable to simulate the model
'slrt_ex serialasciitest' in rapid accelerator mode.

This error occurs because accelerator mode and rapid accelerator mode produce compiled code that
runs on the development computer, not on the Simulink Real-Time target computer. Any blocks that

access hardware report a build error if you compile the model by using accelerator mode or rapid
accelerator mode.

Try This Workaround

Change the simulation mode to normal mode or external mode.

See Also

More About

. “How Acceleration Modes Work”
. “Simulink Real-Time Options Pane”

External Websites
. MathWorks Help Center website

17-27

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

17 Troubleshooting

Troubleshoot Long Build Times for Real-Time Application

The model build process for my Simscape Multibody™ models is slow and uses an unexpected
amount of memory.

What This Issue Means

The default QNX Neutrino compiler switches for Simulink Real-Time apply optimizations that lead to
long build times or slow builds for some complex models, such as Simscape Multibody models.

Try This Workaround

To improve the real-time application build speed, change the compiler switch selections from the
default selections by adding the - fdisable-rtl-sched2 switch for the C/C++ compiler:

Open your Simulink Real-Time model.

In the Simulink Editor, from the Real-Time tab, select Hardware Settings.

Select Code Generation > Build configuration > Specify

Click the C Compiler options and add option -fdisable-rtl-sched2.

Click the C++ Compiler options and add option - fdisable-rtl-sched2.

Click Apply and OK.

N U1 A W N K=

After updating the compiler options, the options appear as shown.

Build configuration: |Specify h
Tool Options

C Compiler -c -V$(QCC_TARGET) -g -02 -fwrapy -fdisable-rtl-sched2 ;

Linker V3{QCC_TARGET) -g -std=gnu++14 —_stdlib=lih5tdc++ o

Shared Library Linker VHQCC_TARGET) -shared -WIl,--no-undefined -g

C++ Compiler -c -V3(QCC_TARGET) -g -std=gnu++14 -stdlib=libstdc++ -02 -fwrap\{-fdisable-rtl-sched2 §
C++ Linker VE(QCC_TARGET) -g -std=gnu++14 -stdlib=libstdc++ n _
C++ Shared Library Linker | -V3(QCC_TARGET) -shared -WI,—-no-undefined -g

Archiver ruvs

Make Tool -f 5(MAKEFILE)

If you prefer to use a programmatic approach to update these compiler switches, you could use this
code.

% add a compiler flag '-fdisable-rtl-sched2'
set param(modelName, 'BuildConfiguration', 'Specify');
options = get param(modelName, 'CustomToolchainOptions');

ccompiler idx = find(strcmp(options, 'C Compiler'));
cppcompiler idx = find(strcmp(options, 'C++ Compiler'));

17-28

Troubleshoot Long Build Times for Real-Time Application

options{ccompiler idx+1} = ...
[options{ccompiler idx+1} ' -fdisable-rtl-sched2'];
options{cppcompiler idx+1} = ...
[options{cppcompiler idx+1} ' -fdisable-rtl-sched2'];
set param(modelName, 'CustomToolchainOptions', options);

See Also

External Websites
. QNX Momentics IDE 7.1 User’s Guide
. QNX Momentics IDE 7.1 User’s Guide, Utilities Reference

17-29

https://www.qnx.com/developers/docs/7.1/index_frames.html
https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.utilities/topic/about.html

17 Troubleshooting

Troubleshoot Working with Persistent Variables

17-30

When I run the getPersistentVariables function or setPersistentVariables function, I see
this error:

Cannot parse the file that stores persistent variables from
target computer. To clear the issue, delete all persistent
variables on target computer. For more information, see
Troubleshoot Working with Persistent Variables.

What This Issue Means

This error message indicates that the file on the target computer that stores the persistent variable
values is corrupted or unreadable.

Try This Workaround

To resolve this issue, clear the persistent variable values that are stored on the target computer.

1 On the development computer, create a Target object tg and connect to the target computer.

tg = slrealtime;
connect(tg);

2 Usethe setPersistentVariables function to clear the persistent variable values that are
stored on the target computer.

setPersistentVariables(tg,[]);

See Also

getPersistentVariables | setPersistentVariables | Persistent Variable Read | Persistent
Variable Write

Related Examples
. “Apply Persistent Variables in Real-Time Applications” on page 16-129

Troubleshoot Unsatisfactory Real-Time Performance

Troubleshoot Unsatisfactory Real-Time Performance

I want some recommended methods to improve unsatisfactory real-time application performance.

What This Issue Means

Run-time performance and reduce the task execution time (TET) of a model depend on model design,
target computer capacity, and target computer utilization.

Try This Workaround

You can improve run-time performance and reduce the task execution time (TET) of a model with
these methods.

Enable Compile with GCC -ffast-math Option

The Compile with GCC -ffast-math option enables the GCC compiler - ffast-math option when
compiling real-time application code. This option is disabled by default for Simulink Real-Time
models.

By enabling the Compile with GCC -ffast-math option, you provide the compiler with more
flexibility to optimize floating-point math at the expense of deviating from the IEEE-754 floating-point
standard.

For more information about the - ffast-math option, see the Semantics of Floating-Point Math in
GCC and .gcc.gnu.org/wiki/FloatingPointMath/

Run Performance Tools
Use these performance tools:

» To profile execution of a real-time application , use the startProfiler command.
* To run the profiler and plot the results, use the plot function.

For more information, see “Execution Profiling for Real-Time Applications” on page 10-7.
Customize Concurrent Execution on Multicore Target Computer

You can improve run-time performance by configuring your model to take advantage of your
multicore target computer:

1 Partition the model into subsystems according to the physical requirements of the system that
you are modeling. Set the block sample rates within each subsystem to the slowest rate that
meets the physical requirements of the system.

2 Create execution tasks and triggers, and then explicitly assign subsystem partitions to the tasks.
See “Partition Your Model Using Explicit Partitioning” and “Multicore Programming with
Simulink”.

You can also use the Simulink Schedule Editor to partition the model. In the Simulink Editor,
click the Modeling tab and select Design > Schedule Editor. For more information, see
“Create Partitions from a Rate-Based Model”.

3 Run the real-time application.

17-31

https://gcc.gnu.org/wiki/FloatingPointMath/
https://gcc.gnu.org/wiki/FloatingPointMath/
https://gcc.gnu.org/wiki/FloatingPointMath/

17 Troubleshooting

Note Do not use MATLAB System blocks in the top level of Simulink Real-Time models in which task
execution is explicitly partitioned. These blocks generate a TLC error when building the real-time
application, for example:

"Unable to find TLCBlockSID within the Block scope"

Minimize the Model

You can improve run-time performance by minimizing your model to make more memory and CPU
cycles available for the real-time application:

1 On the Solver pane, increase Fixed-step size (fundamental sample time). Executing with a
short sample time can overload the CPU.

Use polling mode. See “Execution Modes” on page 8-2.
Reduce the number of I/O channels in the model.

Contact Technical Support
For additional guidance, refer to these sources:

* MathWorks Tech Support: MathWorks Help Center website
¢ MATLAB Answers: www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
 MATLAB Central: www.mathworks.com/matlabcentral

For Speedgoat hardware issues, contact Speedgoat Tech Support: www.speedgoat.com/knowledge-
center.

See Also
Compile with GCC -ffast-math

Related Examples

. “Concurrent Execution on Simulink Real-Time” on page 16-8
More About
. “Execution Profiling for Real-Time Applications” on page 10-7

. “Partition Your Model Using Explicit Partitioning”
. “Execution Modes” on page 8-2

. “Find Simulink Real-Time Support” on page 17-36
. “Multicore Programming with Simulink”

External Websites

. MathWorks Help Center website

. www.speedgoat.com/products-services
* www.speedgoat.com/knowledge-center
. gcc.gnu.org/wiki/FloatingPointMath/

17-32

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/
https://www.speedgoat.com/knowledge-center
https://www.speedgoat.com/knowledge-center
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.speedgoat.com/products-services
https://www.speedgoat.com/knowledge-center
https://gcc.gnu.org/wiki/FloatingPointMath/

Troubleshoot Overloaded CPU from Executing Real-Time Application

Troubleshoot Overloaded CPU from Executing Real-Time
Application

Some issue is producing a CPU overload when executing a real-time application.

What This Issue Means

A CPU overload indicates that the CPU is unable to complete processing a model time step before
restarting for the next time step.

When this error occurs, the Simulink Real-Time RTOS halts model execution and the Target object
property TargetStatus shows an error, for example:

mCPUOverload: Sub-rate exception: Overload limit (0) exceeded in 0.02s rate with 1 overloads

If you allow the overload, model execution continues until the allowed overload limit is reached. If the
model continues to run after a CPU overload, the time step lasts as long as the time required to finish
the execution. This behavior delays the next time step.

Model design or target computer resources cause CPU overloads. Possible reasons are:

* The target computer is too slow or the model sample time is too small.
* The model is too complex (algorithmic complexity).

» /O latency, where each I/O channel used introduces latency into the system. I/O latency can cause
the execution time to exceed the model time step.

To find latency values for Speedgoat boards, contact Speedgoat technical support.

Try This Workaround

The Simulink Real-Time RTOS usually halts model execution when it encounters a CPU overload. You
can configure the Simulink Real-Time model to allow CPU overloads. Use this capability to support
long initializations and for overload diagnosis. You also can try to reduce overloads by improving
application performance and enabling the Compile with GCC -ffast-math option.

Permit Long Initialization Time

For some real-time applications, normal initialization can extend beyond the first sample time. Use
the SLRT Overload Options block to increase the number of startup time steps to ignore overloads. By
default, only the first time step ignores overloads.

Note Allowing the target computer CPU to overload can cause incorrect results, especially for
multirate models. Use the SLRT Overload Options block only for diagnosis. When your diagnosis is
complete, turn off these options.

Enable Compile with GCC -ffast-math Option
The Compile with GCC -ffast-math option enables the GCC compiler - ffast-math option when

compiling real-time application code. This option is disabled by default for Simulink Real-Time
models.

17-33

https://www.speedgoat.com/help

17 Troubleshooting

17-34

By enabling the Compile with GCC -ffast-math option, you provide the compiler with more
flexibility to optimize floating-point math at the expense of deviating from the IEEE-754 floating-point
standard.

For more information about the - ffast-math option, see the Semantics of Floating-Point Math in
GCC and .gcc.gnu.org/wiki/FloatingPointMath/

Force Polling Mode

The Force polling mode option enables polling mode — instead of interrupt-driven mode — for
clocking the real-time application. Enabling this option can help reduce CPU overloads if:

* The target computer has at least four CPU cores.
* The CPU overload is caused by sporadic TET spikes.

See Also
Compile with GCC -ffast-math

Related Examples
. “Monitor CPU Overload Rate” on page 10-3

More About
. “CPU Overload” on page 10-2

External Websites
. MathWorks Help Center website

https://gcc.gnu.org/wiki/FloatingPointMath/
https://gcc.gnu.org/wiki/FloatingPointMath/
https://gcc.gnu.org/wiki/FloatingPointMath/
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

Troubleshoot Gaps in Streamed Data

Troubleshoot Gaps in Streamed Data

A real-time application is producing a live streaming overload while attempting to stream signal data
at a high rate.

What This Issue Means

Live streaming from a real-time application does not guarantee all the data appears in the Simulation
Data Inspector. Live stream instrumentation runs at a lower priority than the real-time application.
So, data sent by live streaming could be dropped if the host-target connection cannot keep up.

If a live stream overload occurs, you could see noticeable gaps in the data in the Simulation Data
Inspector or see that some timesteps are lost when you export data from the Simulation Data
Inspector.

Try This Workaround

The issue is caused by high data rates and live streaming of data.
To workaround the issue:

* Modify the real-time application to decrease the data rate for live streaming data. To do this, you
could increase the sample rate, instrument fewer signals, or increase the decimation of
instrumented signals.

* Change the real-time application to use file logging instead of live streaming. File logging is
capable of logging higher data rates without dropping data.

See Also

Related Examples

. “Parameter Tuning and Data Logging” on page 7-19

More About

. “Trace or Log Data with the Simulation Data Inspector” on page 7-22

External Websites
. MathWorks Help Center website

17-35

https://www.mathworks.com/support/search.html?fq=category:slrealtime/index

17 Troubleshooting

Find Simulink Real-Time Support

17-36

For support with Speedgoat target machines or the Speedgoat I/O Blockset, contact Speedgoat
support:

www.speedgoat.com/knowledge-center

For support on general MATLAB or Simulink issues, see MathWorks Help:
www.mathworks.com/help

For support on Simulink Real-Time issues, see:

* Simulink Real-Time Support:

MathWorks Help Center website
* Simulink Real-Time Answers:

www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time

www.mathworks.com/matlabcentral/answers/?term=xPC+Target
* Simulink Real-Time Central File Exchange:

www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time
www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target
After searching these resources, if you still cannot solve your issue:

» For online or phone support, contact MathWorks technical support directly.

https://www.speedgoat.com/knowledge-center
https://www.mathworks.com/help
https://www.mathworks.com/support/search.html?fq=category:slrealtime/index
https://www.mathworks.com/matlabcentral/answers/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/answers/?term=xPC+Target
https://www.mathworks.com/matlabcentral/fileexchange/?term=Simulink+Real-Time
https://www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target

Install Simulink Real-Time Software Updates

Install Simulink Real-Time Software Updates

The general procedure for updating Simulink Real-Time is:

1

3

Navigate to the MathWorks download page:

www.mathworks.com/downloads

Navigate to the page for the Simulink Real-Time software version that you want. Download the
software version to your development computer.

Install and integrate the new release software.

After updating Simulink Real-Time, to re-create your Simulink Real-Time target settings:

A W N -

[~) IS |

In the MATLAB Command Window, type slLrtExplorer.
On the Targets Tree pane, select a target computer node.
Click the Target Configuration tab.

Click Change IP Address and select the IP Address and Netmask for communication method
between your development and target computer. For more information, see “Target Computer
Settings”. Click OK.

Click the Disconnected link, toggling it to Connected.
Repeat steps 2 through 5 for each target computer.

Build each model that you want to execute. In the Simulink Editor, on the Real-Time tab, click
Run on Target.

See Also

More About

“Target Computer Settings”

External Websites

www.mathworks.com/downloads
www.speedgoat.com/knowledge-center

17-37

https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads
https://www.speedgoat.com/knowledge-center

	Introduction
	Simulink Real-Time Product Description
	Speedgoat Target Computers and I/O Hardware

	Model Architectures
	FPGA Models
	Speedgoat FPGA Support with HDL Workflow Advisor
	Speedgoat Simulink-Programmable I/O Module Support
	Prepare for FPGA Workflow

	Interrupt Configuration

	Functional Mock-up Units and Simulink Real-Time
	Apply Functional Mock-up Units by Using Simulink Real-Time
	Compile Source Code for Functional Mock-up Units
	Implement the FMU Block in Model
	Compile FMU File That Contains Source Code

	Third-Party Calibration Support
	Calibrate Real-Time Application
	Prepare ASAP2 Data Description File
	Initial Setup
	Set Up Parameters
	Set Up Signals
	Set Up Lookup Tables
	Generate Data Description File

	Calibrate Parameters with Vector CANape
	Prepare Project
	Prepare Device
	Configure Signals and Parameters
	Measure Signals and Calibrate Parameters

	Vector CANape Limitations
	Troubleshoot Vector CANape Operation
	What This Issue Means
	Try This Workaround

	Calibrate Parameters with ETAS Inca
	Prepare Database
	Prepare Project
	Prepare Workspace
	Prepare Experiment
	Configure Signals and Parameters
	Measure Signals and Calibrate Parameters

	ETAS Inca Limitations
	Troubleshoot ETAS Inca Operation
	What This Issue Means
	Try This Workaround

	ASAM XIL API Support
	Install the Simulink Real-Time Support Package for ASAM XIL Standard
	Prerequisites for Using ASAM XIL API

	Classes and Methods of ASAM XIL API
	MAPort Class
	ECUMPort Class
	ECUCPort Class
	CaptureEvent Class
	Capture Class
	WatcherFactory Class
	ConditionWatcher Class
	CapturingFactory Class
	CapturingResult Class
	CycleNumberDuration Class
	TimeSpanDuration Class
	DurationFactory Class
	DurationWatcher Class
	ConditionWatcher Class
	MAPORTFactory Class
	TestBench Class
	SignalFactory Class
	SignalGeneratoryFactory Class
	SignalGenerator Class

	Real-Time Application Setup
	Real-Time Application Environment
	Select Default Target Computer
	Select Default Target Computer
	Command-Line Interface and Target Computer
	Targets Object and Target Computers

	Set Up Target Computer Ethernet Connection
	Connect Ethernet Cables
	Configure Ethernet Address
	Related Ethernet Configuration Topics

	Target Computer Update, Reboot, and Startup Application
	Update Software
	Reboot Target Computer
	Select Startup Application

	Signals and Parameters
	Signal Monitoring Basics
	Monitor Signals by Using Simulink Real-Time Explorer
	Instrument a Stateflow Subsystem
	Animate Stateflow Charts with Simulink External Mode
	Signal Tracing Basics
	Export and Import Signals in Instrument by Using Simulink Real-Time Explorer
	Save Signals to Disk
	Get MATLAB Code for Signals

	Trace Signals by Using Simulink External Mode
	Set Up for External Mode Simulation
	Set Stop Time and Simulate

	Data Logging with Simulation Data Inspector (SDI)
	Parameter Tuning and Data Logging
	Trace or Log Data with the Simulation Data Inspector
	Set Up Model for Logging
	Set Up Simulation Data Inspector
	View Simulation Data

	External Mode Usage
	Signal Logging and Streaming Basics
	How Application is Run Affects Signals Logged
	File Logging and Streaming Workflow

	Tune Parameters by Using Simulink Real-Time Explorer
	Set Up the Simulation Data Inspector
	View Initial Parameter Values
	Modify Parameter Values

	Tune Parameters by Using MATLAB Language
	Access Parameters by Using Application Object

	Tune Parameters by Using Simulink External Mode
	Tune Parameters by Using Block Diagram
	Tune Parameters by Using Hold Updates and Update All Parameters

	Save and Reload Parameters by Using Simulink Real-Time Explorer
	Save and Reload Parameters by Using the MATLAB Language
	Save Current Set of Real-Time Application Parameters
	Load Saved Parameters to Real-Time Application
	View or Edit Parameter Values in Parameter Set
	Add or Update Startup Parameter Set for Application

	Tunable Block Parameters and Tunable Global Parameters
	Tunable Parameters
	Inlined Parameters
	Tune Global Parameters by Using External Mode
	Tune Global Parameters by Using Simulink Real-Time Explorer
	Tune Global Parameters by Using MATLAB Language

	Tune Inlined Parameters by Using Simulink Real-Time Explorer
	Configure Model to Tune Inlined Parameters
	Initial Value
	Updated Value

	Tune Inlined Parameters by Using MATLAB Language
	Tune Inlined Parameter

	Tune Parameter Structures by Using Simulink Real-Time Explorer
	Create Parameter Structure
	Replace Block Parameters with Parameter Structure Fields
	Save and Load Parameter Structure
	Tune Parameters in a Parameter Structure

	Tune Parameter Structures by Using MATLAB Language
	Create Parameter Structure
	Save and Load Parameter Structure
	Replace Block Parameters with Parameter Structure Fields
	Tune Parameters in a Parameter Structure

	Define and Update Inport Data
	Required Files
	Map Inport to Use Square Wave
	Update Inport to Use Sawtooth Wave

	Define and Update Inport Data by Using MATLAB Language
	Required Files
	Map Inport to Use Square Wave
	Update Inport to Use Sawtooth Wave

	Stimulate Root Inport by Using MATLAB Language
	Inport Data Mapping Limitations
	Display and Filter Hierarchical Signals and Parameters
	Hierarchical Display
	Filtered Display
	Sorted Display

	Troubleshoot Signals Not Accessible by Name
	What This Issue Means
	Try This Workaround

	Troubleshoot Parameters Not Accessible by Name
	What This Issue Means
	Try This Workaround

	Troubleshoot Instance-Specific Parameters Not Saved
	What This Issue Means
	Try This Workaround

	Internationalization Issues

	Execution Modes
	Execution Modes

	Real-Time Application Execution
	Working with the Target Computer Command Line
	Control Real-Time Application at Target Computer Command Line
	Execute Target Computer RTOS Commands at Target Computer Command Line

	Tuning Performance
	CPU Overload
	Monitor CPU Overload Rate
	Execution Profiling for Real-Time Applications
	Reduce Build Time for Simulink Real-Time Referenced Models

	External Code Integration
	External Code Integration of Libraries and C/C++ Code with Simulink Real-Time Models
	Considerations for Integrating Third-Party Libraries and External Code into Simulink Real-Time
	Value of Upgrading Your C/C++ Code for Integration into Simulink Real-Time
	Approaches for C/C++ Code Integration into Simulink Real-Time
	Build Libraries from Source Code for Simulink Real-Time
	External Code Integration for S-Functions and Simulink Real-Time
	Additional C/C++ Project for Simulink Real-Time

	Hello World! Example External Code Integration for Simulink Real-Time

	Simulation Data Inspector
	View Data in the Simulation Data Inspector
	View Logged Data
	Import Data from the Workspace or a File
	View Complex Data
	View String Data
	View Frame-Based Data
	View Event-Based Data

	Import Data from a CSV File into the Simulation Data Inspector
	Basic File Format
	Multiple Time Vectors
	Signal Metadata
	Import Data from a CSV File

	Microsoft Excel Import, Export, and Logging Format
	Basic File Format
	Multiple Time Vectors
	Signal Metadata
	User-Defined Data Types
	Complex, Multidimensional, and Bus Signals
	Function-Call Signals
	Simulation Parameters
	Multiple Runs

	Configure the Simulation Data Inspector
	Logged Data Size and Location
	Archive Behavior and Run Limit
	Incoming Run Names and Location
	Signal Metadata to Display
	Signal Selection on the Inspect Pane
	How Signals Are Aligned for Comparison
	Colors Used to Display Comparison Results
	Signal Grouping
	Data to Stream from Parallel Simulations
	Options for Saving and Loading Session Files
	Signal Display Units

	How the Simulation Data Inspector Compares Data
	Signal Alignment
	Synchronization
	Interpolation
	Tolerance Specification
	Limitations

	Save and Share Simulation Data Inspector Data and Views
	Save and Load Simulation Data Inspector Sessions
	Share Simulation Data Inspector Views
	Share Simulation Data Inspector Plots
	Create Simulation Data Inspector Report
	Export Data to the Workspace or a File
	Export Video Signal to an MP4 File

	Inspect and Compare Data Programmatically
	Create a Run and View the Data
	Compare Two Signals in the Same Run
	Compare Runs with Global Tolerance
	Analyze Simulation Data Using Signal Tolerances

	Limit the Size of Logged Data
	Limit the Number of Runs Retained in the Simulation Data Inspector Archive
	Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data
	View Data Only During Simulation
	Reduce the Number of Data Points Logged from Simulation

	Execution with MATLAB Scripts
	Real-Time Application Objects and Options in the MATLAB Interface
	Target and Application Objects
	Control Real-Time Application by Using Objects
	Use Real-Time Application Object Functions

	Simulink Real-Time Instruments and Instrument Panel Apps
	Add Instruments to Real-Time Application from Simulink Model
	Instrumentation Apps for Real-Time Applications
	Create App Designer Instrument Panels by Using App Generator
	Tip About MLDATX and SLX Files

	Create App Designer Instrument Panels by Using Simulink Real-Time Components
	Create Standalone Instrument Panel App by Using Application Compiler

	Automated Test with Simulink Test
	Test Real-Time Application in Simulink Test

	Examples
	Simulink Real-Time Examples
	Tune Decimation for File Log Data Without Model Rebuild
	Concurrent Execution on Simulink Real-Time
	Add App Designer App to Inverted Pendulum Model
	Basic App Designer App for Real-Time Application Interface
	Create and Update Instrument Panel for Stateflow Car Transmission
	Connect Triggered Subsystem by Using Thread Trigger
	EtherCAT Protocol with Beckhoff Analog IO Subordinate Devices EL3062 and EL4002
	EtherCAT Protocol with Beckhoff Digital IO Subordinate Devices EL1004 and EL2004
	EtherCAT Protocol Motor Velocity Control with Accelnet Drive
	EtherCAT Protocol Motor Position Control with Accelnet Drive
	Generate ENI Files for EtherCAT Devices
	EtherCAT Protocol Detect Network Failure and Reset
	EtherCAT Protocol Sequenced Writing SoE Subordinate Device Configuration Variables
	EtherCAT Protocol Sequenced Writing CoE Subordinate Device Configuration Variables
	Simple ASCII Encoding/Decoding Loopback Test (with Baseboard Blocks)
	ASCII Encoding/Decoding Loopback Test
	ASCII Encoding/Decoding Loopback Test (with Baseboard Blocks)
	ASCII Encoding/Decoding Resync Loopback Test
	ASCII Encoding/Decoding Resync Loopback Test (with Baseboard Blocks)
	Binary Encoding/Decoding Loopback Test
	Binary Encoding/Decoding Loopback Test (with Baseboard Blocks)
	Binary Encoding/Decoding Resync Loopback Test
	Binary Encoding/Decoding Resync Loopback Test (with Baseboard Blocks)
	Target to Development Computer Communication by Using TCP
	Target to Host Transmission by Using UDP
	Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks
	Synchronize PTP Clocks on Two Target Computers
	Apply Simulink Real-Time Model Template to Create Real-Time Application
	Insert Event into Execution Profiling Stream
	Create Listeners for Target Computer Events
	Control Real-Time Application by Using C# Code
	Run Real-Time Application by Using Python Script
	Control Color of Lamp on Instrument Panel
	Configure Input and Output Ports for Bit Packing and Unpacking
	Run Real-Time Simulation of Permanent Magnet Synchronous Motor
	Apply Persistent Variables in Real-Time Applications
	Communicate with Data Distribution Service (DDS) Middleware

	Troubleshooting
	Troubleshooting Basics
	Troubleshoot Missing Real-Time Tab
	What This Issue Means
	Try This Workaround

	Troubleshoot Communication Failure Through Firewall (Windows)
	What This Issue Means
	Try These Workarounds

	Troubleshoot Cannot Load Shared Object on Target Computer
	What This Issue Means
	Try This Workaround

	Troubleshoot Signal Data Logging from Nonvirtual Bus, Fixed-Point, and Multidimensional Signals
	What This Issue Means
	Try This Workaround

	Troubleshoot Signal Data Logging from Inport in Referenced Model
	What This Issue Means
	Try This Workaround

	Troubleshoot Signal Data Logging from Inport in Referenced Model in Test Harness
	What This Issue Means
	Try This Workaround

	Troubleshoot Signal Data Logging from Send and Receive Blocks
	What This Issue Means
	Try This Workaround

	Troubleshoot Signals for Streaming or File Logging
	What This Issue Means
	Try These Workarounds

	Troubleshoot Folder Names with Spaces or Special Characters Halt Model Builds
	What This Issue Means
	Try This Workaround

	Troubleshoot Model Links to Static Libraries or Shared Objects
	What This Issue Means
	Try This Workaround

	Troubleshoot Build Error for Accelerator Mode
	What This Issue Means
	Try This Workaround

	Troubleshoot Long Build Times for Real-Time Application
	What This Issue Means
	Try This Workaround

	Troubleshoot Working with Persistent Variables
	What This Issue Means
	Try This Workaround

	Troubleshoot Unsatisfactory Real-Time Performance
	What This Issue Means
	Try This Workaround

	Troubleshoot Overloaded CPU from Executing Real-Time Application
	What This Issue Means
	Try This Workaround

	Troubleshoot Gaps in Streamed Data
	What This Issue Means
	Try This Workaround

	Find Simulink Real-Time Support
	Install Simulink Real-Time Software Updates

